



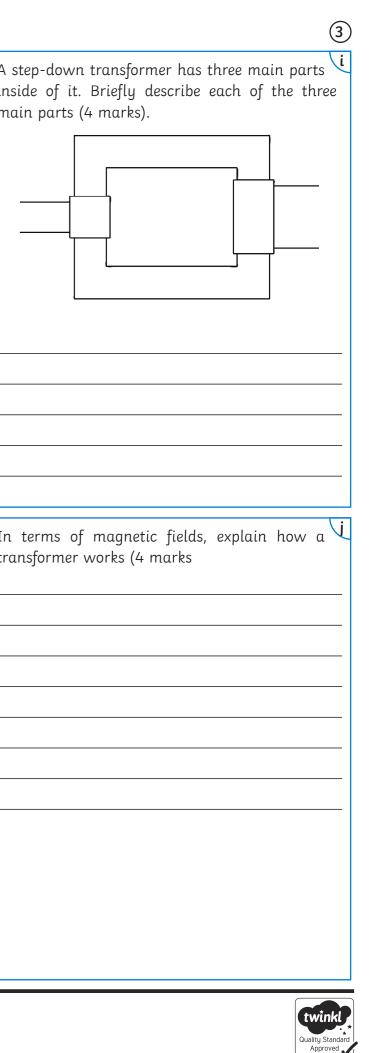

You are given the following equation in

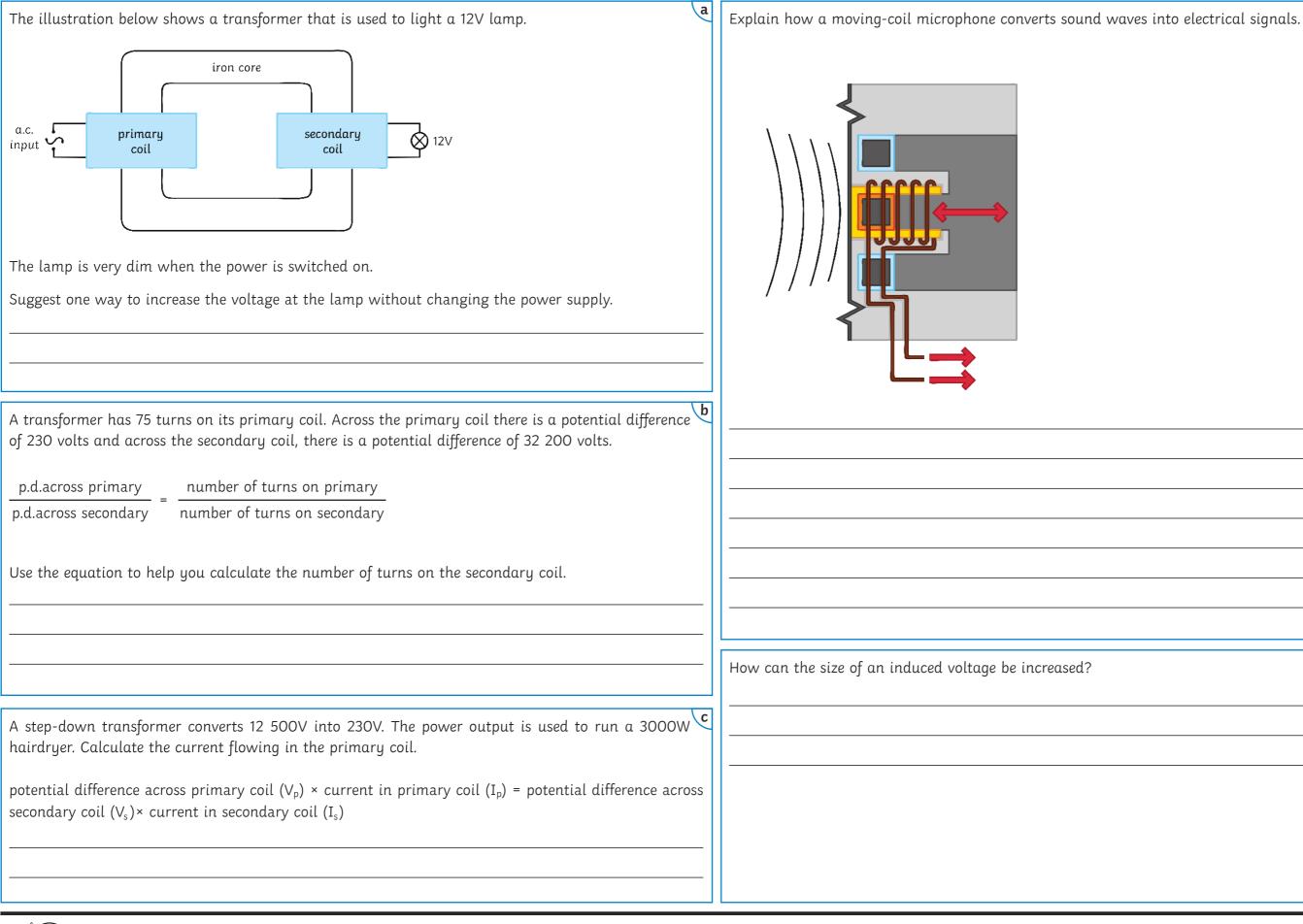
force = magnetic flux density × current × length

Note: in other calculations, you may be required

When a current flows through a conducting wire, a magnetic field is produced around

State two factors the strength of the magnetic



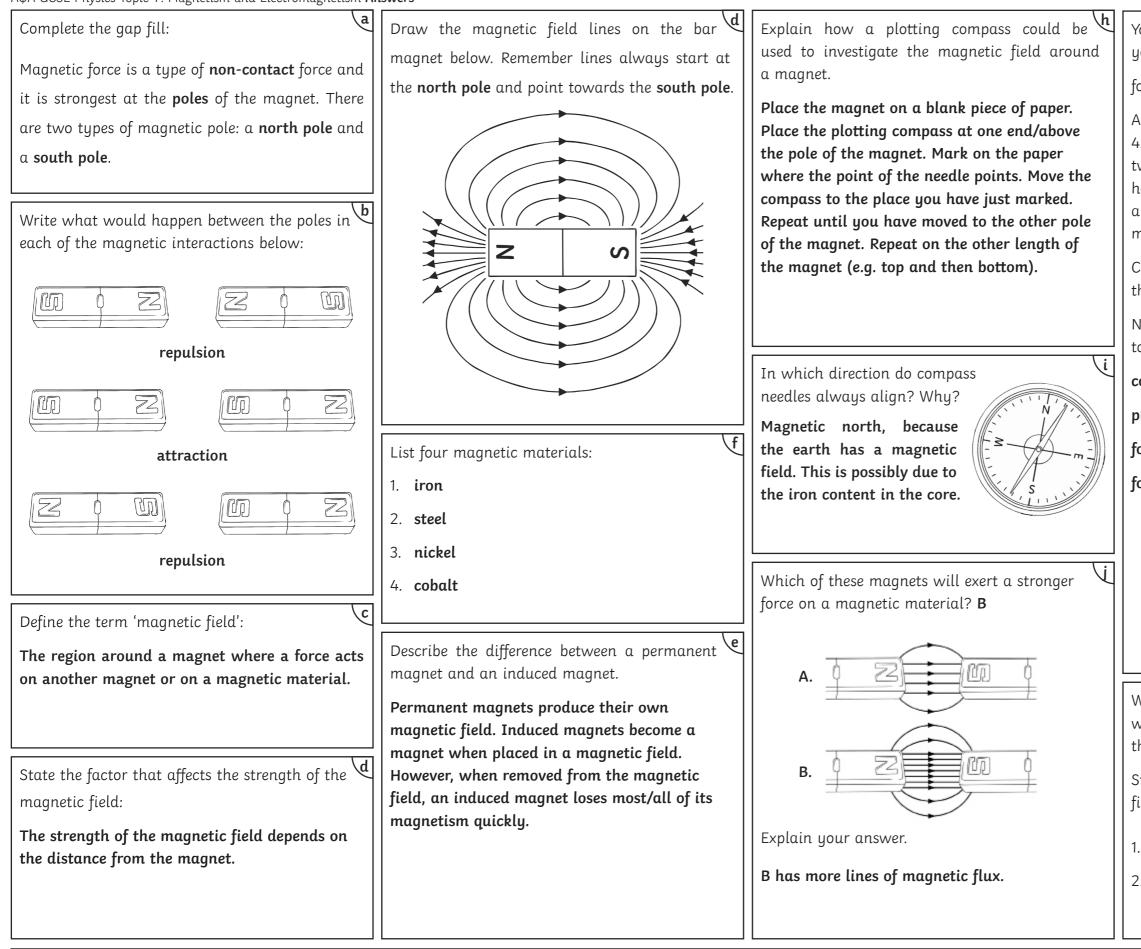


| AQA GCSE Physics Topic 7: Magnetism and Electromagnetism                                                           |                                                                                                                               |                                                                                                        | 2                                                                                            |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| A long, straight conducting wire is placed<br>vertically so that it passes through a horizontal<br>piece of board. | Describe how you would use the piece of d<br>equipment previously stated to investigate the<br>magnetic field you have drawn. | How can you find the north pole of a solenoid?<br>                                                     | What is the motor effect?                                                                    |
| Iron filings are sprinkled onto the board. Draw the pattern they would form:                                       |                                                                                                                               |                                                                                                        |                                                                                              |
|                                                                                                                    |                                                                                                                               |                                                                                                        | State three ways you can increase the force:                                                 |
|                                                                                                                    |                                                                                                                               | List four ways in which you can make h                                                                 | 2                                                                                            |
|                                                                                                                    | What is a solenoid?                                                                                                           | the magnetic field around a solenoid/<br>electromagnet stronger:                                       | 3                                                                                            |
| State the piece of equipment you could use <b>b</b>                                                                |                                                                                                                               | ·                                                                                                      | How can you reverse the direction of the force? <b>U</b>                                     |
| to investigate the magnetic field you have drawn above.                                                            | Draw the magnetic field pattern around a f                                                                                    | 2                                                                                                      |                                                                                              |
|                                                                                                                    | solenoid below:                                                                                                               | 3                                                                                                      |                                                                                              |
| State the method that informs you of the direction of the current in a straight wire.                              | (1)                                                                                                                           | 4                                                                                                      | A motor has a magnetic flux density of 1.5T m<br>and a current of 8A.                        |
| What do your thumb and fingers represent in this method?                                                           |                                                                                                                               |                                                                                                        | The total length of the wire is 500cm.<br>Calculate the force on the wire using the equation |
| thumb:                                                                                                             | Current Current<br>out in                                                                                                     | Describe what happens to the magnetic<br>field around a straight wire when the current<br>is reversed. | F = BIL.                                                                                     |
| fingers:                                                                                                           | What is this pattern similar to?                                                                                              |                                                                                                        |                                                                                              |
|                                                                                                                    |                                                                                                                               |                                                                                                        |                                                                                              |
|                                                                                                                    |                                                                                                                               |                                                                                                        |                                                                                              |
| Science                                                                                                            |                                                                                                                               |                                                                                                        | twinkl<br>Quality Standard<br>Approved                                                       |



| You are giv           | ven the following ed      | quation in a | How can the direction of a motor be reversed?                                                         | Describe how you would use an iron nail, a f                      | А            |
|-----------------------|---------------------------|--------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------|
| your exam.            | , ,                       |              |                                                                                                       | length of insulated wire and a cell to make an                    | ir           |
| force = magn          | ietic flux density × curr | ent × length |                                                                                                       | electromagnet that can be used to pick up some steel paper clips. | rr           |
| Complete the          | e table:                  |              |                                                                                                       |                                                                   |              |
| Symbol<br>Part of the | What It Represents        | Units        | d                                                                                                     |                                                                   |              |
| Equation              | force                     |              | How can the speed of a motor be increased?                                                            |                                                                   |              |
| В                     |                           |              | What rule can be used to find the direction of the force?                                             |                                                                   |              |
|                       |                           | A            | What angle do your thumb, first and second finger<br>need to be at?<br>What does each part represent? | Why will a motor not work without g<br>a commutator?              | <br>Ir<br>tr |
| L                     |                           |              | thumb:<br>first finger:<br>second finger:                                                             | Describe a simple electric motor.                                 |              |
| What is the b         | pasis of an electric moto | br?          |                                                                                                       |                                                                   |              |





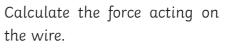





e

(4)








You are given the following equation in your exam:

force = magnetic flux density × current × length

A wire with a current of 4.0A is placed between two bar magnets (each has a width of 12mm) in a state of attraction. The magnetic flux density is 0.2T.



Note: in other calculations, you may be required to rearrange the formula.

## convert 12mm into metres = 0.012m

### place values into equation:

force = 0.2T × 4.0A × 0.012m

### force = 0.0096N (newtons)

When a current flows through a conducting  $\checkmark$  wire, a magnetic field is produced around the wire.

State two factors the strength of the magnetic field depends on:

1. size of the current

2. distance from the wire



| A long, straight conducting wire is placed<br>vertically so that it passes through a horizontal<br>piece of board. | Describe how you would use the piece of d<br>equipment previously stated to investigate the<br>magnetic field you have drawn.                   | How can you find the north pole of a solenoid?<br>Using the right-hand grip method. Hold the solenoid with your right hand and fingers | Wh<br>If a<br>ma |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Iron filings are sprinkled onto the board. Draw the pattern they would form:                                       | Place a magnetic compass at one point along the<br>wire. Turn the power supply on and off. Move<br>the magnetic compass further along the wire. | pointing in the direction the current is flowing.<br>Your thumb should point to the north pole.                                        | and              |
|                                                                                                                    | Again, turn the power supply on and off. Move<br>the compass further away from the wire to see<br>that the magnetic field is weaker.            |                                                                                                                                        | Sta              |
|                                                                                                                    |                                                                                                                                                 |                                                                                                                                        | 2.               |
|                                                                                                                    | What is a solenoid?                                                                                                                             | List four ways in which you can make the magnetic field around a solenoid/                                                             | 3.               |
|                                                                                                                    | A solenoid is formed when a long piece of                                                                                                       | electromagnet stronger:                                                                                                                |                  |
|                                                                                                                    | conducting (and insulated) wire is looped into a                                                                                                | 1. Use a larger current.                                                                                                               |                  |
| State the piece of equipment you could use                                                                         | coiled cylinder.                                                                                                                                | 2. Use an iron core.                                                                                                                   | Но               |
| to investigate the magnetic field you have drawn above.                                                            | Draw the magnetic field pattern around a f                                                                                                      | 3. Add more turns to the wire.                                                                                                         | By               |
| plotting compass                                                                                                   | solenoid below:                                                                                                                                 | 4. Place the turns of the wire closer together.                                                                                        | rev              |
| proteing compass                                                                                                   |                                                                                                                                                 |                                                                                                                                        |                  |
| State the method that informs you of the direction of the current in a straight wire.                              |                                                                                                                                                 |                                                                                                                                        | A r              |
| Right-hand grip method/rule.                                                                                       |                                                                                                                                                 |                                                                                                                                        | and              |
| What do your thumb and fingers represent in                                                                        |                                                                                                                                                 |                                                                                                                                        | The              |
| this method?                                                                                                       | Current Current                                                                                                                                 | Describe what because to the mean is (i)                                                                                               | Cal              |
| thumb:                                                                                                             | out in                                                                                                                                          | Describe what happens to the magnetic field around a straight wire when the current                                                    | con              |
| The direction of the current.                                                                                      |                                                                                                                                                 | is reversed.                                                                                                                           | pla              |
| fingers:                                                                                                           | What is this pattern similar to?                                                                                                                | The magnetic field is also reversed.                                                                                                   | for              |
| The direction the field lines should be drawn.                                                                     |                                                                                                                                                 |                                                                                                                                        | for              |
|                                                                                                                    | The magnetic field around a bar magnet.                                                                                                         |                                                                                                                                        |                  |
|                                                                                                                    |                                                                                                                                                 |                                                                                                                                        |                  |
|                                                                                                                    |                                                                                                                                                 |                                                                                                                                        |                  |



at is the motor effect?

a conductor carrying a current is placed in a gnetic field, the magnet producing the field d the conductor exert a force on each other.

2

\i

te three ways you can increase the force:

- Increasing the size of the current.
- Increasing the length of the conductor in the magnetic field.
- Increasing the flux density.

w can you reverse the direction of the force?  $^{\bigvee}$ 

reversing the direction of the current or versing the direction of the magnetic field.

motor has a magnetic flux density of 1.5T  $\checkmark$ 

e total length of the wire is 500cm.

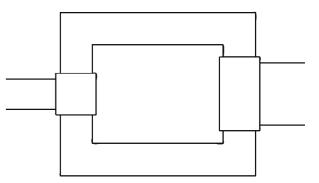
lculate the force on the wire using the equation <sup>4</sup> BIL.

wert cm into metres = 5m

ce values into equation:

ce = 1.5T × 8.0A × 5m

ce = 60N (newtons)



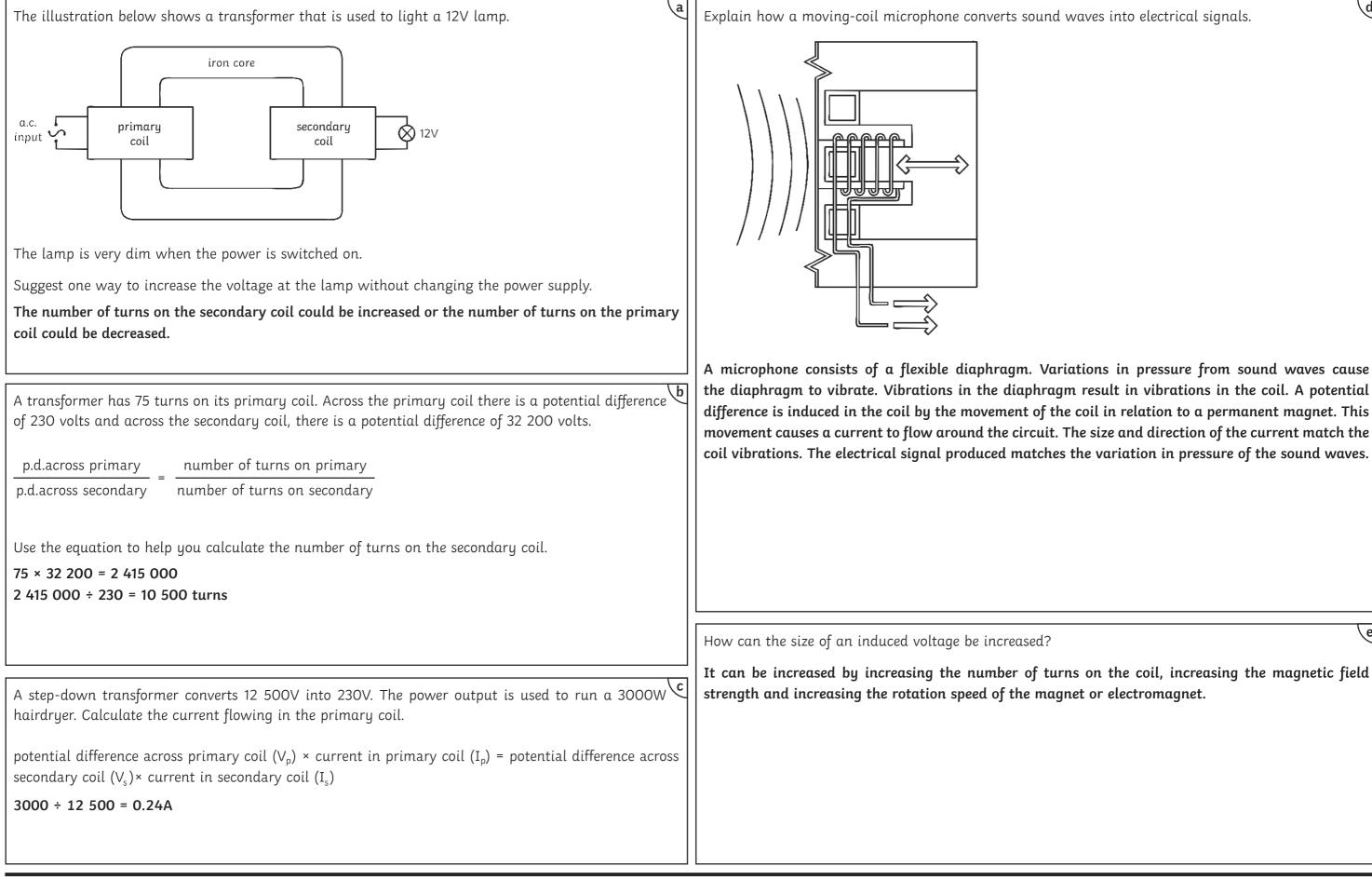

| You are given the following equation in a your exam.                                                                 |                                         | quation in a | How can the direction of a motor be reversed?                                                                                                                                          | Describe how you would use an iron nail, a flength of insulated wire and a cell to make an                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| force = magn                                                                                                         | etic flux density × curr                | ent × length | reversing the direction of the magnetic field.                                                                                                                                         | electromagnet that can be used to pick up some steel paper clips.                                                                                                                                                                                                       |
| Complete the                                                                                                         | table:                                  |              |                                                                                                                                                                                        | Wrap the wire around the iron nail. Connect                                                                                                                                                                                                                             |
| Symbol<br>Part of the<br>Equation                                                                                    | What It Represents                      | Units        | d                                                                                                                                                                                      | the wire to the power supply (with connecting<br>leads and crocodile clips). Switch on the power<br>supply. Use de-magnetised paper clips. Suspend                                                                                                                      |
| F                                                                                                                    | force                                   | N            | How can the speed of a motor be increased?<br>By increasing the size of the current or increasing<br>the magnetic field/use a larger magnet.                                           | the nail near the paperclips and record how<br>many collected. The more paperclips suspended,<br>the stronger the electromagnet is. Change the<br>number of turns (on the coil). Change the current<br>(through the coil).                                              |
| В                                                                                                                    | magnetic flux<br>density                | т            | What rule can be used to find the direction of <b>e</b> the force?<br>Fleming's left-hand rule                                                                                         | Why will a motor not work without                                                                                                                                                                                                                                       |
| I                                                                                                                    | current                                 | A            | <ul> <li>What angle do your thumb, first and second finger need to be at? 90°</li> <li>What does each part represent?</li> <li>thumb: movement</li> <li>first finger: field</li> </ul> | a commutator?<br>The commutator ensures that the current stays<br>in the same direction. Also the coil would not be<br>free to spin. This means the coil would remain<br>still and not rotate.                                                                          |
| L                                                                                                                    | Length of the wire<br>within the field. | m            | second finger: current                                                                                                                                                                 | Describe a simple electric motor.<br>A coil of wire is fixed (on an axle). The ends of the<br>wire are connected via a split-ring commutator.<br>To a battery/power supply. The carbon brush                                                                            |
| What is the basis of an electric motor?<br>A coil of wire carrying a current in a magnetic<br>field tends to rotate. |                                         |              | B                                                                                                                                                                                      | contacts at the commutator ensures the current<br>direction in the coil is always the same. The<br>coil is placed between two (flat) magnets.<br>With opposite poles facing each other. The coil<br>rotates continuously and this is the basis of an<br>electric motor. |
| 1ª R                                                                                                                 |                                         |              |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                         |



A step-down transformer has three main parts inside of it. Briefly describe each of the three main parts (4 marks).

3




A transformer is made up of a primary coil from the alternating current (ac) input, a secondary coil leading to the ac output and an iron core. A transformer has one coil of insulated wire on each side. There are a greater number of turns of wire on the primary coil than there are on the secondary coil.

In terms of magnetic fields, explain how a transformer works (4 marks

Changing the current in the primary coil produces a magnetic field which changes as the current changes. The magnetic field strength of the iron core increases. The increase in magnetic field strength causes a changing potential difference (p.d.) in the secondary coil. An alternating current in the external circuit is produced as a result.



#### AQA @hysidshyaits7(separate)ghetgsretaad ElectromaggetetsnAasseers





# \ e

(4

