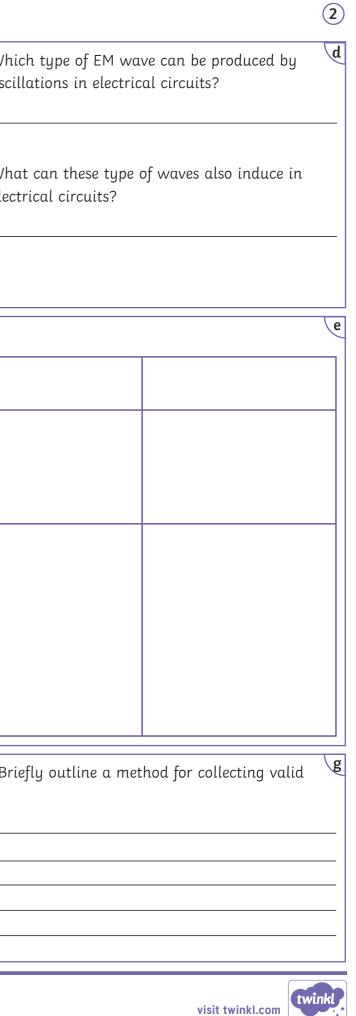
AQA Physics (Separate) Unit 6 Waves Revision Activity Mat

AQA Physics (Separate) Unit 6 Waves Revision Activity Mat			
Complete the gap fill: a Define: e All waves transfer from one place frequency: frequency: to another, but the does not move.	You are given the followin exam: period = 1/frequenc What are the units for		f Identifying the suitability of apparatus to measure wave speed, frequency, and wavelength was a required practical.
The particles oscillate () around a	period (time)? frequency?		State a control variable in this practical:
particle and, in turn, they oscillate too. amplitude: State the two types of wave. b	What is the symbol equat	-	g Why was it important to control this variable?
1.	speed, frequency and wav	velength?	What was the biggest source of error in your
Which type of wave oscillates perpendicular (at right angles) to the direction of energy transfer?	Now complete the rest of Symbol in the Equation		practical?
Which type of wave oscillates parallel to the	v freque	anov	How could you overcome this error?
direction of energy transfer?		m	
Which letter on the graph represents amplitude? wavelength? crest? A	Calculate the speed of a v wavelength of 42cm and		h A wave has a frequency of 54Hz and a speed i of 330m/s. Calculate the wavelength.
trough? C			


Which type of wave are electromagnetic	Complete the gap fill:	Which type of EM wave has the	W
(EM) waves?	Electromagnetic waves transfer	longest wavelength?	os
	from the source of the waves to an	highest frequency?	-
Which part of the EM spectrum can human	The waves form a continuous	shortest wavelength?	w
eyes detect?	and all types travel at	lowest frequency?	ele
	the same through a vacuum	most energy?	_
	(space) or air.	least energy?	

Complete the boxes to show the order of the electromagnetic (EM) spectrum and state at least two uses of each type of EM wave.

	0		
EM Wave:			
Uses:			
Explanation:			

State four factors that are affected by different f substances interacting with different EM waves:	The amount of absorption or radiation of infrared radiation by different surfaces was a required practical. Bri results for this experiment.
1	
2	
3	
4	

State three types of EM waves that can have a hazardous effect: 1. 1.	State two factors that affect the amount of harm caused by certain EM waves: d 1.	Suggest why nurses wear lead-lined aprons when performing x-ray examinations.
Write the EM wave from the previous question next to the description of the damage it does: Causes skin to age prematurely and increases the risk of skin cancer.	Evaluate the use of x-rays in medical imaging (4 marks). f	State two other precautions that nurses and healthcare professionals can undertake to reduce the harm of x-rays.
Complete the gap fill: Radiation dose is a measure of the risk of resulting from exposure of the body to the It is measured in sieverts, and 1 sievert (Sv) is equivalent to millisieverts (mSv). Some types of radiation are more hazardous than others due to the amount of in the wave and how penetrating it is.		2.
Science		visit twinkl.com

3

AQA Physics (Separate) Unit 6 Waves Revision Activity Mat

1

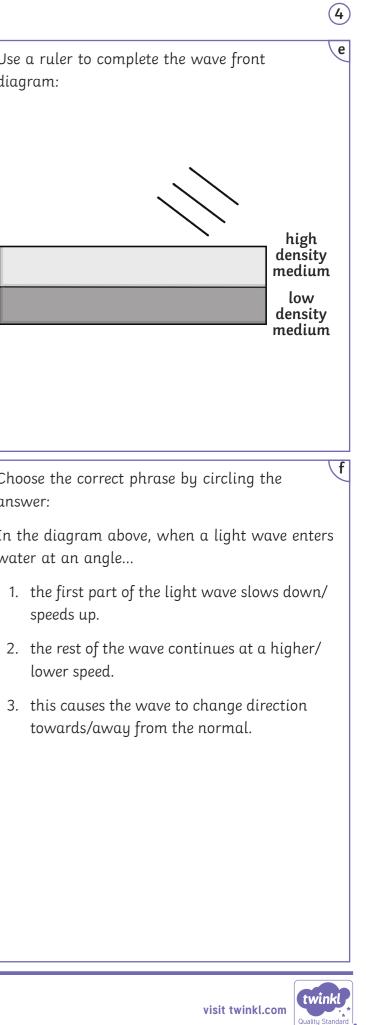
1.5

1.3

2.4

Science

air


glass

water

diamond

Complete the gap fill:	Use a ruler to draw the path of the light ray		U
The of a wave depends on the	as it travels through the glass block.	from air with a low refractive index, into glass with a higher refractive index (see data in	di
material () it is travelling		table below). Therefore upon entering the glass,	
through. If a wave changes from one medium to		the speed slows down and the ray is refracted towards the normal. What happens as the light	
another, the changes too.		leaves the glass block and travels into the air?	
Waves are only refracted when they meet the		You must refer to the 'normal' in your answer.	
boundary between two media at an			
The more the speed changes between the two			h
media, the greater the direction of the wave			1
changes.			
However, a wave that meets the boundary		·	
at (perpendicular) will not be			
			С
Light waves travel in air than in			a
glass. The change in speed and thus direction			Ir
between these two media can be shown using a			W
diagram.			
The refractive index of a medium is the extent to w	hich the light is refracted when it enters the medium	. Look at the table of data:	
I REITALLIVE	s can be drawn from the data?		
Medium Index			

1		
-		

What does the law of reflection state?	Complete the gap fill:	þ	Which type of waves are S-
	Reflection occurs on different surfaces. Reflection o	n a smooth surface is called	
	Reflection on a rough surface is called		This type of wave can t medium? Circle the correct
	as the reflected rays of light scatter in many differe		solid liquid gas
	different On rough	surfaces, different rays of light are reflected at	
			Which waves travel faster?
		object image	Which waves are refracted a the earth?
		eye plane mirror	A lens is a transparent blo causes light to refract. State
What is an echo?	Describe the features of ultrasound and the	f	1 2
	journey the sound waves take (4 marks).	233-2	
			Explain the difference betv
			concave lens.
Ultrasound imagery is used to see unborn babies d			
in the womb. Name two other uses of ultrasound.			
		Seismic waves are produced by earthquakes that	
Explain how ultrasound works in these applications.		occur in the earth's crust.	
		Which type of waves are P-waves?	
		This type of wave can travel through which	
		medium? Circle the correct answer(s)	
		solid liquid gas	

ch	type	of	waves	are	S-waves?
----	------	----	-------	-----	----------

his type of wave can travel through which nedium? Circle the correct answer(s)

5

Vhich waves are refracted as they travel through 1e earth?

lens is a transparent block of material that g auses light to refract. State the two types of lens.

xplain the difference between a convex and h oncave lens.

Calculate the magnification of an object that is 3cm tall and forms an image 350cm tall.	A perfect black body is a theoretical object, what properties would it have?
What are the seven colours of the spectrum?	Required Practical
	"Investigate how the amount of infrared radiation absorbed or radiated by a surface depends on the nature of that surface."
Which colour is refracted the most and which colour is refracted the least? Explain why.	Describe how you could carry out the practical.
Black is the best at absorbing radiation and white is a poor absorber. Explain why.	
State the definition of: 1. Emission	
2. Absorption	

visit twinkl.com

AQA Physics (Separate) Unit 6 Waves Revision Activity Mat Answers

Complete the gap fill:	Define:	You are give	n the following equation	in the f Ide
All waves transfer energy from one place to	frequency:	exam: perio	d = 1/frequency	me
another, but the matter does not move. The	The number of waves passing a point	What are th	e units for	WC
particles oscillate (vibrate) around a fixed point	each second.	period (time)? seconds (s)	Sto
and pass energy onto the next particle and, in	amplitude:	frequency? I	1ertz (Hz)	Th
turn, they oscillate too.	The maximum displacement of a point on a wave away from its undisturbed position.			
State the two types of wave.	wavelength:	What is the	symbol equation linking	
1. transverse	The distance from a point on one wave to the		ency and wavelength?	
	equivalent point on the adjacent wave.	v = fλ		
2. longitudinal				pro
		·	te the rest of the table:	Co
Which type of wave oscillates perpendicular (at right angles) to the direction of energy transfer?		Symbol in the Equation	What It Represents	Units Ho
transverse		v	wave speed	m/s
Which type of wave oscillates parallel to the direction of energy transfer?		f	frequency	Hz
longitudinal		λ	wavelength	m
Which letter on the graph represents	d		1	
amplitude? C		Calculate th	e speed of a wave with a	h A
wavelength? B	В	wavelength	of 42cm and a frequency	of 11Hz. of
crest? A A		v = fλ		Re
trough? D		convert cm	into m = 0.42m	the
		substitute n	umbers into equation:	Su
		11Hz × 0.42	n = 4.62m/s	33
	✓ ✓ ✓ ✓ ✓ ✓			
		-		

entifying the suitability of apparatus to asure wave speed, frequency, and wavelength s a required practical.

1

te a control variable in this practical: e volume of water in the tank.

ny was it important to control this variable? e depth of the water will affect the speed and evelength.

nat was the biggest source of error in your actical?

unting the waves by eye.

w could you overcome this error? e a stroboscope.

vave has a frequency of 54Hz and a speed 330m/s. Calculate the wavelength.

arrange the equation to make wavelength e subject: $\lambda = \frac{V}{f}$

ostitute numbers into the equation: Dm/s ÷ 54Hz = 6.1 metres

\i

Which type of wave are electromagnetic (EM) waves? transverse	Complete the gap fill: Electromagnetic waves transfer energy from the	Which type of EM wave has the longest wavelength? radio waves	Wł oso rad
Which part of the EM spectrum can human eyes detect? visible light only	source of the waves to an absorber . The waves form a continuous spectrum and all types travel at the same velocity through a vacuum (space) or air.	highest frequency? gamma rays shortest wavelength? gamma rays lowest frequency? radio waves most energy? gamma rays least energy? radio waves	Wł ele oso

EM Wave:	radio waves	microwaves	infrared waves	visible light	ultraviolet waves	x-rays	gamma rays
Uses:	Television, radio and Bluetooth.	Satellite communication and cooking food.	Remote controls, infrared cameras and heaters.	Optical fibres and photography (cameras).	Security marking, energy efficient lamps and sunbeds.	Medical imaging and medical treatment for cancer.	Medical treatments for cancer and sterilising food.
Explanation:	The waves have low energy and so are not harmful for transmitting information over long distances.	The water in the food absorbs the microwaves and heats up the food. Microwaves also travel in straight lines so are useful in communication.	Very hot objects might glow, like the wires in a toaster and transfer the heat energy to the food.	The light wave is reflected inside of the fibre without being lost and so can carry data over large distances.	Not visible to the human eye on banknotes and other documents, so can help to identify counterfeit or stolen goods.	X-rays penetrate skin and soft tissue, but not through bones so an image can be formed.	Highest frequency of all EM waves so will pass through plastic wrapping and metal to kill bacteria. Will also 'kill' cancer cells.

 absorption reflection 	The amount of absorption or radiation of infrared radiation by different surfaces was a required practical. Brie results for this experiment. 1. Cover four boiling tubes in different materials to create different surfaces; matt black, shiny black, white a Pour the same volume of the same start temperature of hot water into the tubes (these control variables ensu of each tube every minute (the dependent variable). 4. The tube that cools the fastest emits infrared energy t
--	---

/hich type of EM wave can be produced by scillations in electrical circuits?

2

\d

ıdio waves

/hat can these type of waves also induce in ectrical circuits?

scillations

iefly outline a method for collecting valid

e and silver (the independent variable). 2. Isure validity). 3. Measure the temperature I the fastest.

\g

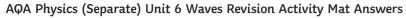
F				
State three types of EM waves that a 1. ultraviolet waves 2. x-rays 3. gamma rays Write the EM wave from the previou			Suggest why nurses x-ray examinations. Nurses wear lead-lin exposed to harmful x spectrum, and also of highly ionising and mutations and poten (a tumour). Therefor wearing a lead-lined	
description of the damage it does: ultraviolet waves	Causes skin to age prematurely and increases the risk of skin cancer.	in terms of life-expectancy. However, the energy emitted by gamma rays is the highest in the EM spectrum, so sources with short half lives must be used. Gamma rays can be used to treat cancer without invasive surgery and a high focused beam causes the cancer cells to mutate further, resulting in them dying. However, normal cells nearby are also affected and undergo		
x-rays and gamma rays	Causes ionisation inside of cells, this damage leads to the cells dying.	Evaluate the use of x-rays in medical in		State two other prec professionals can un 1. Work from a di glass window.
Complete the gap fill: Radiation dose is a measure of the r exposure of the body to the radiatio It is measured in sieverts, and 1 siev millisieverts (mSv). Some types of radiation are more ho the amount of energy in the wave a it is.	n. Pert (Sv) is equivalent to 1000 azardous than others due to	X-rays can be used to detect broken bones, visualise dental issues, treat cancer cells and as part of CT scans. However, x-rays can cause ionisation in cells and increase the chance of mutation therefore leading to rapidly growing and dividing cells (a tumour).		2. Wear a radiation record exposure

wear lead-lined aprons when performing

3

g

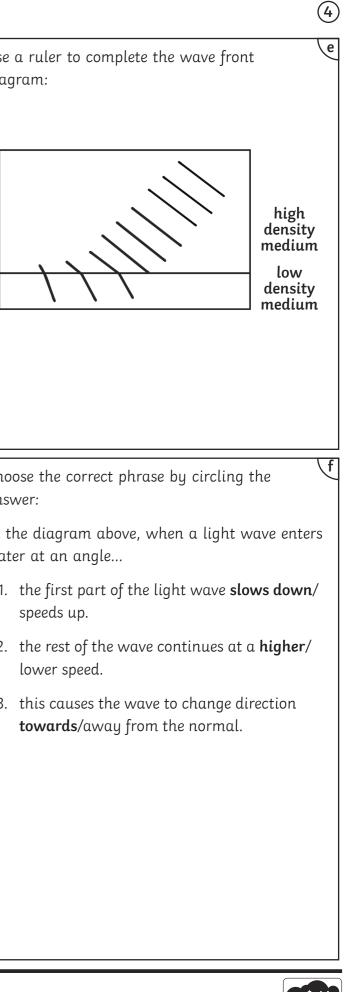
h

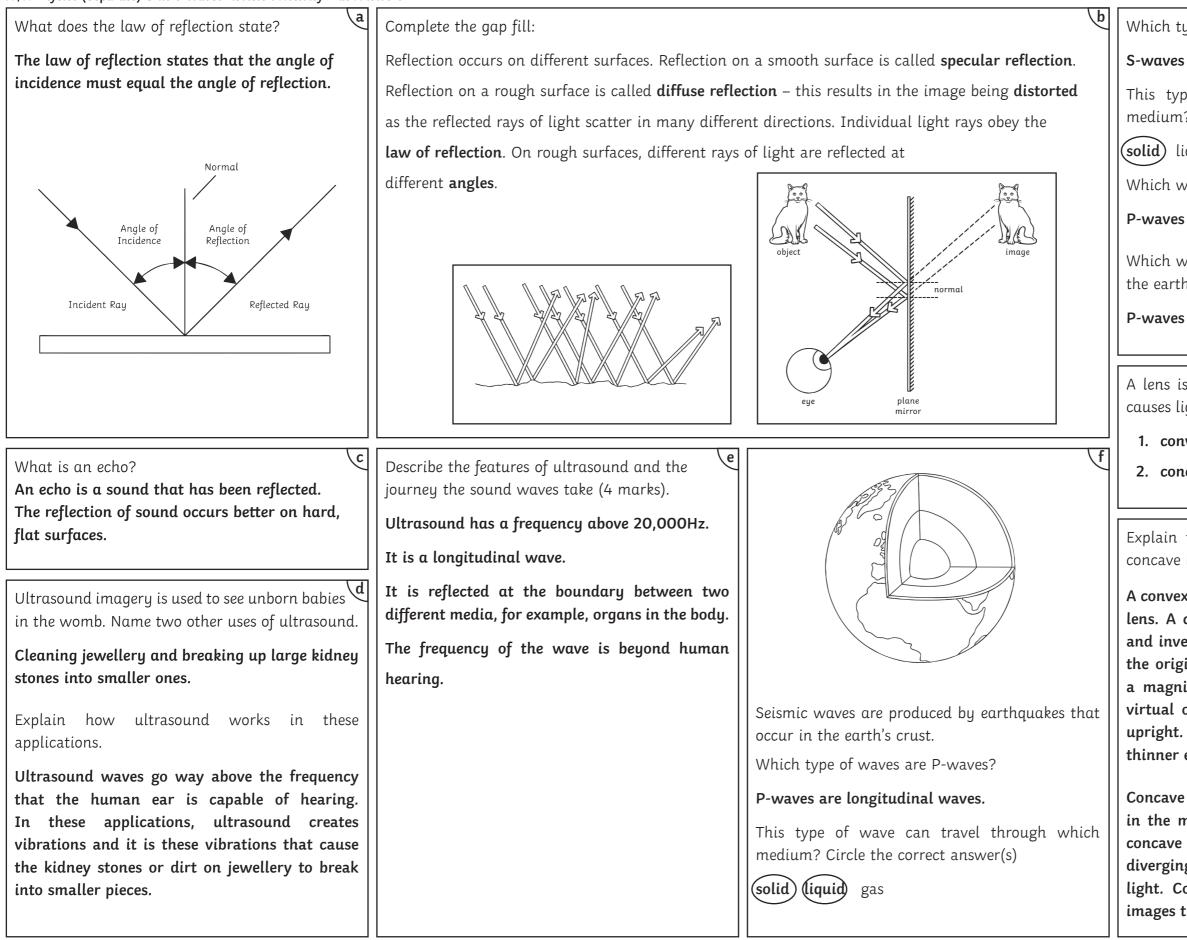

ned aprons due to two factors: they are x-rays towards the upper end of the EM on a regular basis. The x-rays themselves are can cause damage to the cell, resulting in entially leading to uncontrolled cell growth ore, nurses can reduce their radiation dose by d apron.

cautions that nurses and healthcare idertake to reduce the harm of x-rays.

stance/step into another room/stand behind a

on badge/dosimeter to measure and




Complete the go	ıp fill:	a	Use a ruler to draw the path of the light ray 🕑 In the diagram in b, the light ray is travelling 🤇	Use	
The speed of a v	wave depends on	the material	as it travels through the glass block. from air with a low refractive index, into glass	diag	
	ravelling through		with a higher refractive index (see data in table below). Therefore upon entering the glass,		
changes from or	ne medium to an	other, the speed	the speed slows down and the ray is refracted	╵┍	
changes too.			towards the normal. What happens as the light leaves the glass block and travels into the air?		
Waves are only	refracted when t	hey meet the	You must refer to the 'normal' in your answer.		
boundary betwe	een two media at	an angle .	The light travels from a high refractive index		
The more the sp	eed changes betv	veen the two	(glass) to a lower refractive index (air), so the light bends away from the normal.		
media, the grea	ter the direction	of the wave			
changes.					
However, a wav	e that meets the	boundary at 90°			
(perpendicular)	will not be refra	cted.			
Light waves trav	vel faster in air t	han in glass.			
The change in s	peed and thus di	rection between		Choo ansv	
these two medic	α can be shown ι	ising a ray		 In tł	
diagram.				wate	
				1.	
The refractive ir	ıdex of a mediur	ı is the extent to w	which the light is refracted when it enters the medium. Look at the table of data:		
-	Refractive	What conclusions	is can be drawn from the data?	2.	
Medium	est refractive index, a value of 1, and diamond has the highest refractive index of 2.4.	3.			
	Index Air has the lowest refractive index, a value of 1, and attaining has the highest refractive index of 2.4. Air is a gas and has the lowest refractive index. Then the refractive index increases in liquids (water) and increases				
air	1	further in solids (glass and diamond).			
glass	1.5				
water	1.3				
	1				

diamond

2.4

Which type of waves are S-waves?

S-waves are transverse waves.

This type of wave can travel through which medium? Circle the correct answer(s)

(solid) liquid gas

Which waves travel faster?

P-waves

Which waves are refracted as they travel through the earth?

A lens is a transparent block of material that causes light to refract. State the two types of lens.

1. convex

2. concave

Explain the difference between a convex and h concave lens.

A convex lens is often referred to as a converging lens. A convex lens forms images that are real and inverted and can be bigger or smaller than the original object. If the lens is being used as a magnifying glass, then the image will be a virtual one that is bigger than the object and upright. Convex lenses have a thicker middle and thinner edges.

Concave lenses, on the other hand, are thinner in the middle and are thicker on the edges. A concave lens is sometimes referred to as a diverging lens. This is because they can disperse light. Concave lenses produce virtual, upright images that are smaller than the original object.

(5)

AQA Physics (Separate) Unit 6 Waves Revision Activity Mat Answers

Calculate the magnification of an object that	A perfect black body is a theoretical object,
is 3cm tall and forms an image 350 cm tall.	what properties would it have?
magnification = image height ÷ object height	A perfect black body would not reflect or
magnification = 350 ÷ 3	transmit any radiation and could absorb all
magnification = 117 (magnified)	radiation that falls on it.
What are the seven colours of the spectrum?	Required Practical
Red, orange, yellow, green, blue, indigo and	"Investigate how the amount of infrared radiation
violet.	absorbed or radiated by a surface depends on the
Which colour is refracted the most and which	nature of that surface."
colour is refracted the least? Explain why.	Describe how you could carry out the practical.
Red light is refracted the least because it has the	Fill a Leslie cube with boiling water but do not
longest wavelength and violet is refracted the	completely fill the cube. Place the lid on top and
most because it has the shortest wavelength.	place on a heatproof mat.
Black is the best at absorbing radiation and white is a poor absorber. Explain why. Black is the best at absorbing radiation as it can absorb all wavelengths of light. In comparison, white is a poor absorber as it reflects all wavelengths of light. State the definition of: 1. Emission is the process of giving out radiation. 2. Absorption is the process of taking in radiation.	Leave the Leslie cube for one minute. This allows the surface being tested to heat up to the temperature of the water inside of the cube. Using an infrared detector, measure the intensity of infrared radiation emitted from each of the surfaces to be tested. Ensure that the detector is the same distance from each surface.

6

visit twinkl.com