AQA GCSE Chemistry Topic 5: Energy Changes

In an exothermic reaction heat the reaction to a	Describe how energy transfer can be measured in a practical.	Sketch a reaction pro
the surrounding environment.	Draw a diagram to show the practical.	\uparrow
The surrounding temperature		
In an endothermic reaction heat the chemical reaction.		
The surrounding temperature		
Circle the exothermic reactions and underline the endothermic reactions:		
combustion photosynthesis electrolysis		Describe the reaction
neutralisation		
water reacting with calcium oxide ammonium chloride reacting with water		
Name some every day uses of exothermic reactions.		Describe the reaction
Give an example of an every day use of an endothermic reaction.	Sketch a reaction profile for an endothermic reaction.	
	$\left \begin{array}{c} \uparrow \\ \uparrow \end{array} \right $	Use the approximate change in the followi $H_2 + Cl_2 \rightarrow 2HCl$
		State whether the rea
What is activation energy?		H–H = 436kJ/mol
	$ \qquad \qquad$	

What is the difference between a cell and a battery?			it these metals into ord ast reactive to most rea		What type of energy is transferred from a hydrogen fuel cell? Tick one answer.
			zinc, magnesium, silver, copper		chemical thermal
		-			electrical
How could you test the metals for reactivity?				netals for reactivity?	elastic
	the difference between ble and rechargeable b				
					Cross out the incorrect word from the bold choices so each sentence is correct.
					In a fuel cell, energy is released through oxidation/reduction instead of a combustion reaction.
					The reaction takes place at a higher/lower temperature than if it was to be burned.
Complete	the table below.			C	The energy is released as electrical/thermal energy.
	Positive Electrode				Complete the equation to show the reaction at
		magnesium	zinc	copper	Complete the equation to show the reaction at the negative electrode of a fuel cell.
Negative Electrode	magnesium			+2.70	2H ₂ + + 4e [−]
Neg Eleci	zinc	-1.60v	0.00v	+1.10v	Complete the equation to show the reaction at the positive
	copper				electrode of a fuel cell. $+ 2H_2O + 4e^$
	the voltage that would sitive electrode.	be produced using ma	gnesium for the negativ	ve electrode and silver	When you add these two half equations together, what is the overall equation for the reaction?
			_		

In an exothermic reaction heat **exits** the reaction to the surrounding environment.

The surrounding temperature **increases** .

In an endothermic reaction heat **enters** the chemical reaction.

The surrounding temperature $\ensuremath{\mathsf{deceases}}$.

Circle the exothermic reactions and underline the endothermic reactions:

combustion **exothermic**

- $photosynthesis \ endothermic$
- electrolysis **exothermic**
- neutralisation **exothermic**
- water reacting with calcium oxide exothermic
- ammonium chloride reacting with water $\ensuremath{\mathsf{endothermic}}$
- Name some every day uses of exothermic reactions.
- Hand warmers, self-heating cans, matches, etc.

Give an example of an every day use of an endothermic reaction. **sports injury packs, etc.**

What is activation energy? The minimum amount of energy needed by the reactants to start the reaction.

What is the battery? A cell is mo contact the chemicals A battery i series and Compare the rechargeab In non-rect the reactar stops and the Alkaline bo In rechargea	e difference between of ade from two differe rough an electrode. I which react to produ- s two or more cells of they produce a high ne difference between le and rechargeable b hargeable batteries of nts have been used, t the battery no longer atteries are non-rech eable batteries and of eaction can be revers l electrical current. T es.	a cell and a nt metals in t contains ice electricity. sonnected in er voltage. non- b non- b terteries. and cells, once all hen the reaction works. argeable. ells, the sed by supplying	Put these metals into order of reactivity, from least reactive to most reactive. zinc, magnesium, silver, copper silver, copper, zinc, magnesium How could you test the metals for reactivity? Place each metal in turn into a clean test tube of water and count the bubbles produced. (The gas can be collected and tested using a lit splint. Listen for a squeaky pop to identify hydrogen gas.)		What type of energy is transferred from a hydrogen fuel cell? Tick one answer. • chemical • thermal • electrical • elastic • Cross out the incorrect word from the bold choices so each sentence is correct. f In a fuel cell, energy is released through oxidation/reduction instead of a combustion reaction. The reaction takes place at a higher/lower
					temperature than if it was to be burned. The energy is released as electrical/thermal
Complete the table below.					energy.
			Positive Electrode		Complete the equation to show the reaction at
		magnesium	zinc	copper	the negative electrode of a fuel cell.
Negative Electrode	magnesium	0.00v	1.60v	+2.70	2H ₂ + 40H⁻ → 4H₂O + 4e ⁻
Neg Elec	zinc	-1.60v	0.00v	+1.10v	Complete the equation to show the reaction at the positive
	copper	-2.70v	-1.10v	0.00v	electrode of a fuel cell. O_2 + 2H ₂ O + 4e ⁻ \longrightarrow 4OH ⁻
for the posi Any reasor	itive electrode. Table value over 2.70	V (the difference in re	agnesium for the negati eactivity between magner voltage produced will b	esium and silver is	When you add these two half equations together, what is the overall equation for the reaction? $2H_2 + O_2 \longrightarrow 2H_2O$

2

visit twinkl.com