
Using the equation
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
What mass of NaCl would be produced from 2.5 grams of
sodium carbonate?
A_{r} of $\mathrm{Na}=23$
$\mathrm{~A}_{r}$ of $\mathrm{H}=1$
$\mathrm{~A}_{r}$ of $\mathrm{Cl}=35.5$
$\mathrm{~A}_{r}$ of $\mathrm{O}=16$
$\mathrm{~A}_{r}$ of $\mathrm{C}=12$

What is the mass of solute when the concentration of a b solution is $4 \mathrm{~g} / \mathrm{dm}^{3}$ and the volume is $600 \mathrm{~cm}^{3}$?
concentration $\left(\mathrm{gm} / \mathrm{dm}^{3}\right)=$ mass of solute
volume

Using the equation above, calculate the following
The mass of a solute is 60 g and the volume is $0.5 \mathrm{dm}^{3}$, what is the concentration?

Rearrange the following equation to find volume.
concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)=$ mass of solute
volume

Why, in some reactions, are the reactants in excess? e
To make sure that the reaction has completely finished and the other reactant has been completely used up.

Define concentration.

\longrightarrow

Draw a diagram to show a solution with a low concentration and a solution with a high concentration

Convert the following measurements in cm^{3} to dm^{3}.

1. $15 \mathrm{~cm}^{3}$
2. $60 \mathrm{~cm}^{3}$
3. $90 \mathrm{~cm}^{3}$
4. $0.5 \mathrm{~cm}^{3}$

When a chemical reaction occurs, the amount of product made is not always equal to the amount calculated. Explain why.
\longrightarrow
\longrightarrow
\qquad
\square

The amount of a product obtained from a reaction is

 called the \qquad The actual yield is compared to the maximum expected amount as a percentage. This is called the \qquad -.Complete the equation below:

$$
\% \text { yield }=\frac{}{\text { expected mass of product }} \times \square
$$

A chemist carried out a reversible reaction. She had expected to make 14.50 kg of product, but only obtained 12.75 kg . Calculate the percentage yield.
工

What is atom economy?
\qquad

The equation below is used to calculate the
of a reaction.
relative formula mass of desired product $\times 100$ sum of relative formula masses of all reactants

$$
\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

In the reaction above, calcium oxide is a useful product and carbon dioxide is a waste product

Calculate the atom economy of the reaction.
\qquad
\qquad

Mass of the product must alway
reactants.
Balance the following:

$2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}$
$\mathrm{Br}_{2}+2 \mathrm{KI} \longrightarrow \mathrm{I}_{2}+2 \mathrm{KBr}$
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

Complete the following sentences

The relative formula mass is the $\left(M_{r}\right)$ of a compound.
It is the sum of the relative atomic masses $\left(A_{r}\right)$ of the atoms.
Calculate the relative formula mass for the following. Show your working out.
A_{r} of $C=12$
A_{r} of $H=1$
A_{r} of $O=16$
A_{r} of $N=14$
Example:
CO_{2}
$12+(16 \times 2)$
$12+32$
$=44$
$\mathrm{H}_{2} \mathrm{O}$
$(1 \times 2)+16$
$2+16$
$=18$
CH_{4}
$12+(1 \times 4)$
$12+4$
$=16$
$\mathrm{NH}_{4} \mathrm{NO}_{3}$
$14+(1 \times 4)+14+(16 \times 3)$
$14+4+14+48$
$=80$

When a gas is produced during a reaction, why might the c mass go down?

The gas may be released into the environment.
Write the equation for when magnesium reacts with oxygen. $2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$

What happens to the mass of the product from the question above?
The mass increases because oxygen is added from the environment.

$$
\% \text { mass }=\frac{A_{r} \times \text { number of atoms } \times 100}{M_{r} \text { of the compound }}
$$

Using the equation above, calculate the \% mass of sodium (Na) in NaCl .
A_{r} of $\mathrm{Na}=23$
A_{r} of $\mathrm{Cl}=35.5$
$\%$ mass $=\frac{23 \times 1 \times 100}{23+355}$
$23+35.5$
$=\frac{2300}{58.5}$
$=39.3 \%$ (to 1d.p.)
A_{r} of $M g=24$
potassium (39 $\times 1$) $39 \mathrm{~g} / \mathrm{mol}$
fluorine (19 $\times 2$) $38 \mathrm{~g} / \mathrm{mol}$
oxygen $(16 \times 2) 32 \mathrm{~g} / \mathrm{mol}$
magnesium (24×1) $24 \mathrm{~g} / \mathrm{mol}$
Use the A_{r} values below to calculate the molar mass of these elements. Don't forget the units.
E.g. A_{r} of sodium $=23$, one mole $=23 \mathrm{~g}$
A_{r} of $K=39$
A_{r} of $F=19$
A_{r} of $O=16$
\square
What is the equation to calculate the number of moles for a pure substance.

$$
\text { moles }=\frac{\text { mass in } g}{M_{r}}
$$

Rearrange the equation to calculate the mass.

$$
\text { mass }=\text { moles } \times M_{r}
$$

What unit are chemical amounts measured in?

1. cm
2. m / s
3. moles

Avogadro's constant is...

1. 6.03×10^{23} per mole
2. 6.02×10^{23} per mole
3. 6.05×10^{23} per mole

What mass of nitrogen is in 92 g of NO_{2} ?

$$
A_{r} \text { of } N=14
$$

$$
A_{r} \text { of } O=16
$$

$$
M_{r}=14+(16 \times 2)=46
$$

$$
N=14
$$

$\underline{14}=0.304$
$\frac{14}{46}$
$0.304 \times 92=28 \mathrm{~g}$

Using the equation ${ }^{\text {a }}$	concentration (gm/dm $\left.{ }^{3}\right)=$ mass of solute \quad c	Convert the following measurements in cm^{3} to dm^{3}. g	A chemist carried out a reversible reaction. She had
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	volume	1. $15 \mathrm{~cm}^{3}$	expected to make 14.50 kg of product, but only obtained 12.75 kg . Calculate the percentage yield.
What mass of NaCl would be produced from 2.5 grams of	Using the equation above, calculate the following:	2. $60 \mathrm{~cm}^{3}$	$(12.75 \div 14.50) \times 100=87.93 \%$
sodium carbonate? A_{r} of $\mathrm{Na}=23$	The mass of a solute is 60 g and the volume is $0.5 \mathrm{dm}^{3}$, what is the concentration?	3. $90 \mathrm{~cm}^{3}$	
		4. $0.5 \mathrm{~cm}^{3}$	
A_{r} of $H=1$	$\text { Concentration = } 60$	Divide by 1000	is atom economy?
A of $\mathrm{Cl}=35.5$			A measure of how many starting atoms are used to
	$=120 \mathrm{~g} / \mathrm{dm}^{3}$	1. $0.015 \mathrm{dm}^{3}$	the useful products.
A_{r} of $\mathrm{O}=16$			
A_{r} of $C=12$	Rearrange the following equation to find volume. concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)=$ mass of solute	2. $0.06 \mathrm{dm}^{3}$ 3. $0.09 \mathrm{dm}^{3}$	
M of $\mathrm{NaCl}=58.5$	volume	4. $0.0005 \mathrm{dm}^{3}$	
Mr_{r} of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$	volume $=$ mass of solute		
$2.5=0.0236$ moles (to 3 significant figures)	$\overline{\text { concentration }}$	When a chemical reaction occurs, the amount of product h	
$\frac{2.5}{106}$		made is not always equal to the amount calculated. Explain why.	The equation below is used to calculate the atom economy of a reaction.
$0.0236 \times 2=0.0472(1: 2$ ratio $)$ $0.0472 \times 58.5=2.76$ grams of NaCl	To make sure that the reaction has completely finished and the other reactant has been completely used up.	Some of the product is lost when it is being collected from the reacting mixture. Not all the reactants make products because the reaction is reversible. Some reactants may react differently to what is expected.	$\begin{aligned} & \frac{\text { relative formula mass of desired product }}{\text { sum of relative formula masses of all reactants }} \times 100 \\ & \mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2} \end{aligned}$
What is the mass of solute when the concentration of a solution is $4 \mathrm{~g} / \mathrm{dm}^{3}$ and the volume is $600 \mathrm{~cm}^{3}$?	Define concentration. The amount of a substance in a certain volume of a solution is called its concentration.		In the reaction above, calcium oxide is a useful product and carbon dioxide is a waste product.
Convert $600 \mathrm{~cm}^{3}$ to $\mathrm{dm}^{3}=0.6 \mathrm{dm}^{3}$	Draw a diagram to show a solution with a low concentration and a solution with a high concentration		Calculate the atom economy of the reaction. RFM of calcium oxide: $40+16=56$
mass $=$ concentration \times volume		The amount of a product obtained from a reaction is ${ }^{\text {i }}$	RFM of carbon dioxide: $12+(16 \times 2)=44$
$4 \times 0.6 \mathrm{dm}^{3}=2.4 \mathrm{~g}$		called the yield. The actual yield is compared to the maximum expected amount as a percentage. This is called the percentage yield. Complete the equation below: $\% \text { yield }=\frac{\text { actual mass of product made }}{\text { expected mass of product }} \times 100$	$(56 \div(56+44)) \times 100=56 \%$

You are asked to prepare $100 \mathrm{~cm}^{3}$ of sodium hydroxide solution (NaOH) with a concentration of $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the amount of solute in grams.
Show your working.
amount in mol $=$ volume in $\mathrm{dm}^{3} \times$ concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ volume $=100 \mathrm{~cm}^{3} \div 1000=0.1 \mathrm{dm}^{3}$
$=0.1 \times 0.5=0.05 \mathrm{~mol}$
RFM of $\mathrm{NaOH}: 22+16+1=39$
$0.05 \mathrm{~mol} \times 39=1.95 \mathrm{~g}$
from the equation: Imol alkali $(\mathrm{NaOH}): 2 \mathrm{~mol}$ acid $\left(2 \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ amount in mol (acid): $0.068 \mathrm{~mol} \times 2=0.136 \mathrm{~mol}$
concentration in mol $/ \mathrm{dm}^{3}=$ amount in $\mathrm{mol} \div$ volume in dm^{3} $0.136 \div 0.025=5.44 \mathrm{~mol} / \mathrm{dm}^{3}$

The volume of one mole of any gas at room temperature d
The volume of one mole of any gas at room temperature
and pressure $\left(20^{\circ} \mathrm{C}\right.$ and 1 atmosphere pressure $)$ is $24 \mathrm{dm}^{3}$.

I understand the following topic: was reacted with $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide. $34.00 \mathrm{~cm}^{3}$ sodium hydroxide was required to neutralise the sulfuric acid. Calculate the concentration of sulfuric acid in mol/ dm^{3}.
$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
volume of acid: $25.00 \mathrm{~cm}^{3}$, concentration of acid: ?
volume of alkali: $34.00 \mathrm{~cm}^{3}$, concentration of alkali: $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$ volume of acid: $25.00 \mathrm{~cm}^{3} \div 1000=0.025 \mathrm{dm}^{3}$
volume of alkali: $34.00 \mathrm{~cm}^{3} \div 1000=0.034 \mathrm{dm}^{3}$
amount in $\mathrm{mol}=$ volume in $\mathrm{dm}^{3} \times$ concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ mount in mol (alkali): $0.034 \times 2.0=0.068 \mathrm{~mol}$

