AQA GCSE Chemistry Topic 3: Quantitative Chemistry

Mass of the must always equal the mass a of the	When a gas is produced during a reaction, why might the mass go down?	Use the A _r values below to calculate the molar mass of these elements. Don't forget the units.	Wh
Balance the following:		E.g. A _r of sodium = 23, one mole = 23g	1.
		A, of K = 39	2.
$\begin{array}{rcl} H_2 + O_2 &\longrightarrow & H_2O\\ Na + Cl_2 &\longrightarrow & NaCl \end{array}$			3.
$Br_2 + KI \longrightarrow I_2 + KBr$ $N_2 + H_2 \longrightarrow NH_3$	Write the equation for when magnesium reacts with oxygen.	A _r of F = 19	Avo
		$A_r \text{ of } O = 16$	1.
Complete the following sentences	What happens to the mass of the product from the question	A_r of Mg = 24	
The relative formula mass is the () of a compound.	above?	potassium	2.
It is the sum of the atomic masses (A,) of the		fluorine (Fl ₂)	3.
atoms.		oxygen (O ₂)	
Calculate the relative formula mass for the following. Show your working out.		magnesium	
A, of C = 12			
A_r of H = 1	% mass = $A_r \times$ number of atoms $\times 100$ d	What is the equation to calculate the number of moles f	
A_r of O = 16	M, of the compound	for a pure substance.	
A_r of N = 14	r of the composite		Wh
Example:	Using the equation above, calculate the % mass of sodium (Na) in NaCl.	moles =	A _r (
CO ₂			
$12 + (16 \times 2)$	A, of Na = 23	Rearrange the equation to calculate the mass.	A _r (
12 + 32		Rearrange the equation to outoutate the mass.	
= 44	A _r of Cl = 35.5		
H ₂ 0			
CH4			
NH ₄ NO ₃			

AQA GCSE Chemistry Topic 3: Quantitative Chemistry			2
Using the equation	concentration (gm/dm³) = mass of solute volume	Convert the following measurements in cm ³ to dm ³ .	A chemist carried out a reversible reaction. She had expected to make 14.50kg of product, but only obtained
$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$		1. 15cm ³	12.75kg. Calculate the percentage yield.
What mass of NaCl would be produced from 2.5 grams of sodium carbonate?	Using the equation above, calculate the following: The mass of a solute is 60g and the volume is 0.5dm ³ , what	2. 60cm ³	
A _r of Na = 23	is the concentration?	 3. 90cm³ 4. 0.5cm³ 	
A_r of H = 1		0.50m	What is atom economy?
A _r of Cl = 35.5			
$A_r \text{ of } O = 16$	d		
A_r of C = 12	Rearrange the following equation to find volume.		
	concentration (mol/dm³) = mass of solute volume		
		h	
		When a chemical reaction occurs, the amount of product made is not always equal to the amount calculated. Explain why.	The equation below is used to calculate the
	Why, in some reactions, are the reactants in excess?		of a reaction.
	To make sure that the reaction has completely finished and the other reactant has been completely used up.		relative formula mass of desired product sum of relative formula masses of all reactants
	Define concentration.		$CaCO_3 \longrightarrow CaO + CO_2$
What is the mass of solute when the concentration of a solution is 4g/dm ³ and the volume is 600cm ³ ?			In the reaction above, calcium oxide is a useful product and carbon dioxide is a waste product.
			Calculate the atom economy of the reaction.
	Draw a diagram to show a solution with a low	The amount of a product obtained from a reaction is i	
	concentration and a solution with a high concentration	called the The actual yield is compared	
		to the maximum expected amount as a percentage. This is called the	
		Complete the equation below:	
		% yield= ×	
Science			visit twinkl.com

AQA GCSE Chemistry Topic 3: Quantitative Chemistry

You are asked to prepare 100cm ³ of sodium hydroxide solution (NaOH) with a concentration of 0.5mol dm ³ . Calculate the amount of solute in grams. Show your working.	A titration was carried out and 25.00cm ³ sulfuric acid was reacted with 2.0mol/dm ³ sodium hydroxide. 34.00cm ³ sodium hydroxide was required to neutralise the sulfuric acid. Calculate the concentration of sulfuric acid in mol/ dm ³ .	I understand the following topic:
	2H ₂ SO ₄ + NaOH → Na ₂ SO ₄ + 2H ₂ O	
		I need to work on the following topic:
What is the name of this piece of equipment?		
R water and a second and a seco		
Name three other pieces of equipment required to carry out a titration reaction.	The volume of one mole of any gas at room temperature d and pressure (20°C and 1 atmosphere pressure) is	
	Calculate the volume of 0.25mol carbon dioxide e at room temperature (rtp) using this equation: volume of gas at rtp = number of moles × 24	
	Calculate the number of moles of hydrogen which occupy 9dm ³ at rtp.	

Mass of the product must always equal the mass of the	When a gas is produced during a reaction, why might the	Use the A_r values below to calculate the molar mass of	What
reactants.	mass go down?	these elements. Don't forget the units.	
Balance the following:	The gas may be released into the environment.	E.g. A_r of sodium = 23, one mole = 23g	1. c
Batance the following.			2. r
$2H_{2} + 0_{2} \longrightarrow 2H_{2}0$	Write the equation for when magnesium reacts with oxygen.	A_r of K = 39	
$2Na + Cl_2 \longrightarrow 2NaCl$	$2Mg + O_2 \longrightarrow 2MgO$		3. r
$Br_2 + 2KI \longrightarrow I_2 + 2KBr$		A_r of F = 19	
$N_2 + 3H_2 \longrightarrow 2NH_3$	What happens to the mass of the product from the question	A_r of $O = 16$	Avog
	above?	r	1. 6
Complete the following sentences	The mass increases because oxygen is added from the	A_r of Mg = 24	
	environment.		2. 6
The relative formula mass is the (M _r) of a compound.		potassium (39 × 1) 39g/mol	
It is the sum of the relative atomic masses (A,) of the atoms.		fluorine (19 × 2) 38g/mol	3. 6
r is the sum of the relative atomic masses (r_{r}) of the atoms.			
Calculate the relative formula mass for the following. Show		oxygen (16 × 2) 32g/mol	
your working out.			
$A = f = (-1)^{2}$		magnesium (24 × 1) 24g/mol	
$A_{r} \text{ of } C = 12$ $A_{r} \text{ of } H = 1$			
$A_r \text{ of } O = 16$	% mass = $A_r \times$ number of atoms × 100 d	What is the equation to calculate the number of moles \int_{f}^{f}	
A_r of N = 14	M _r of the compound	for a pure substance.	What
			- With
Example: CO ₂	Using the equation above, calculate the % mass of sodium (Na) in NaCl.	moles = mass in g M_	A _r of
$12 + (16 \times 2)$		r''r	
12 + 32	A _r of Na = 23	Rearrange the equation to calculate the mass.	A _r of
= 44			M _r =
	A _r of Cl = 35.5	mass = moles × M _r	r
H_20 (1 × 2) + 16			N = 2
2 + 16	$\% \text{ mass} = \frac{23 \times 1 \times 100}{23 + 35.5}$		11
= 18	23 * 33,3		$\frac{14}{46} =$
	= 2300		
CH ₄ 12 + (1 × 4)	58.5	I TP I	0.30
$12 + (1 \times 4)$ 12 + 4			
= 16	= 39.3% (to 1d.p.)		
NH ₄ NO ₃			
$14 + (1 \times 4) + 14 + (16 \times 3)$ 14 + 4 + 14 + 48			
14 + 4 + 14 + 48 = 80			
			L

Using the equation	concentration (gm/dm ³) = mass of solute	Convert the following measurements in cm ³ to dm ³ .	A ch
$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$	volume	1. 15cm ³	expe 12.7
What mass of NaCl would be produced from 2.5 grams of sodium carbonate?	Using the equation above, calculate the following:	2. 60cm ³	(12.
	The mass of a solute is 60g and the volume is 0.5dm ³ , what is the concentration?	3. 90cm ³	
A _r of Na = 23		4. 0.5cm ³	
A_r of H = 1	$\frac{\text{Concentration}}{0.5} = \frac{60}{0.5}$	Divide by 1000	Wha
A _r of Cl = 35.5	= 120g/dm ³	1. 0.015dm ³	A me the u
$A_r \text{ of } O = 16$		2. 0.06dm ³	
A_r of C = 12	Rearrange the following equation to find volume.	3. 0.09dm ³	
	concentration (mol/dm ³) = mass of solute volume		
M _r of NaCl = 58.5	votume	4. 0.0005dm ³	
M_r of $Na_2CO_3 = 106$	volume = mass of solute		
2.5 = 0.0236 moles (to 3 significant figures)	concentration	When a chemical reaction occurs, the amount of product h	
106		made is not always equal to the amount calculated. Explain why.	The
0.0236 × 2 = 0.0472 (1:2 ratio)	Why, in some reactions, are the reactants in excess?	Some of the product is lost when it is being collected from	atom
· · ·	To make sure that the reaction has completely finished	the reacting mixture. Not all the reactants make products	
0.0472 × 58.5 = 2.76 grams of NaCl	and the other reactant has been completely used up.	because the reaction is reversible. Some reactants may react	
		differently to what is expected.	CaCO
What is the mass of solute when the concentration of a b	Define concentration.		In th
solution is 4g/dm ³ and the volume is 600cm ³ ?	The amount of a substance in a certain volume of a solution is called its concentration.		carbo
Convert 600 cm^3 to $dm^3 = 0.6 \text{ dm}^3$	Draw a diagram to show a solution with a low		Calcu RFM
mass = concentration × volume	concentration and a solution with a high concentration	The amount of a product obtained from a reaction is i	RFM
$4 \times 0.6 dm^3 = 2.4 g$		called the yield . The actual yield is compared to the	(56 ÷
		maximum expected amount as a percentage. This is called	
		the percentage yield.	
		Complete the equation below:	
		% yield= $\frac{\text{actual mass of product made}}{\text{expected mass of product}} \times 100$	

chemist carried out a reversible reaction. She had bected to make 14.50kg of product, but only obtained .75kg. Calculate the percentage yield.

2

2.75 ÷ 14.50) × 100 = 87.93%

nat is atom economy? neasure of how many starting atoms are used to make e useful products.

e equation below is used to calculate the om economy of a reaction.

relative formula mass of desired product × 100 sum of relative formula masses of all reactants

 $CO_3 \longrightarrow CaO + CO_2$

the reaction above, calcium oxide is a useful product and bon dioxide is a waste product.

lculate the atom economy of the reaction.

M of calcium oxide: 40 + 16 = 56

M of carbon dioxide: $12 + (16 \times 2) = 44$

 \div (56 + 44)) × 100 = 56%

AQA GCSE Chemistry Topic 3: Quantitative Chemistry Answers

Vou are asked to prepare 100 cm^3 of sodium hydroxide a		(f
You are asked to prepare 100cm of souturn hydroxide	A titration was carried out and 25.00cm ³ sulfuric acid c	I understand the following topic:
solution (NaOH) with a concentration of 0.5mol dm ⁻³ .	was reacted with 2.0mol/dm ³ sodium hydroxide. 34.00cm ³	
Calculate the amount of solute in grams.	sodium hydroxide was required to neutralise the sulfuric	
Show your working.	acid. Calculate the concentration of sulfuric acid in mol/	
amount in mol = volume in $dm^3 \times concentration in mol/dm^3$	dm ³ .	
volume = 100cm ³ ÷ 1000 = 0.1dm ³		
= 0.1 × 0.5 = 0.05mol	$2H_2SO_4 + NaOH \longrightarrow Na_2SO_4 + 2H_2O$	
RFM of NaOH: 22 + 16 + 1 = 39	volume of acid: 25.00cm ³ , concentration of acid: ?	
0.05 mol x 20 - 1.05 g	volume of alkali: 34.00cm ³ , concentration of alkali: 2.0mol/dm ³	I need to work on the following tenie
0.05mol × 39 = 1.95g	volume of acid: 25.00cm ³ ÷ 1000 = 0.025dm ³	I need to work on the following topic:
	volume of alkali: 34.00cm ³ ÷ 1000 = 0.034dm ³	
	amount in mol = volume in dm ³ × concentration in mol/dm ³	
	amount in mol (alkali): 0.034 × 2.0 = 0.068mol	
What is the name of this piece of equipment?	from the equation: Imol alkali (NaOH) : 2mol acid (2H2SO4)	
	amount in mol (acid): 0.068mol × 2 = 0.136mol	
Construction of the second sec		
THE AND THE OWNER OF	concentration in mol/dm ³ = amount in mol ÷ volume in dm ³	
A Branch		
	0.136 ÷ 0.025 = 5.44mol/dm ³	
humatha		
burette	The volume of one mole of any gas at room temperature	
Name three other pieces of equipment required to carry	and pressure (20°C and 1 atmosphere pressure)	
out a titration reaction.	is 24dm ³ .	
conical flask, pipette filler, pipette		
	Calculate the volume of 0.25mol carbon dioxide	
	at room temperature (rtp) using this equation:	
	volume of gas at rtp= number of moles × 24	
	volume = 0.25 × 24 = 6dm ³	
	Calculate the number of moles of hydrogen which occupy	
	9dm ³ at rtp.	
	moles = volume ÷ 24	
	moles = 9 ÷ 24 = 0.375mol	

3

visit twinkl.com