What is an oxidation reaction? (in terms of oxygen transfer)
Write an equation to show an oxidation reaction.

What is a reduction reaction?
Write an equation to show a reduction reaction.

Place the following metals in order of reactivity - adding the b
names to the symbols.
$\mathrm{Na}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Li}, \mathrm{K}, \mathrm{Mg}, \mathrm{Ca}$

Why are hydrogen and carbon sometimes included in the reactivity series?

Place arrows on the reactivity series where hydrogen and carbon could go.

Why is gold often found in its pure state?
-

Complete the word equations.

zinc carbonate + sulfuric acid \rightarrow
magnesium oxide + hydrochloric acid \rightarrow
magnesium carbonate + nitric acid \rightarrow
calcium carbonate + hydrochloric acid \rightarrow

Describe what a metal reacting with an acid can tell you about d the reactivity of the metal.

$$
\text { acid }+ \text { metal } \rightarrow \text { salt + hydrogen }
$$

\longrightarrow
$工$

On the pH scale, label:
strong acid;
strong alkali;
neutral;
weak acid;
weak alkali.
What does the pH show?

Some metals react with water to produce

Some metals react with acid to produce

Describe how to make a soluble salt from an insoluble base.

1. Choose an a \qquad -.
2. Choose an i \qquad base.
3. Warm the a \qquad .
4. Add the insoluble base to the acid until there is no further r \qquad -.
5. F \qquad the mixture.
6. Heat the solution to e \qquad the water.
7. C \qquad of salt will start to form.

Complete the neutralisation reaction.

acid + base \rightarrow \qquad $+\mathrm{W}$ \qquad
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$ \qquad
What is the pH of the products of a neutralisation reaction?
$\begin{array}{lll}\text { a) } 1 & \text { b) } 7 & \text { c) } 14\end{array}$
Complete the following:

\qquad

Why is aluminium oxide mixed with cryolite?

What is the overall equation for the electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to make aluminium and oxygen?

Why can aluminium not be extracted by carbon?
\longrightarrow

Write the equation for the reaction at the negative electrode.

Write the equation for the reaction at the positive electrode.

In which of the following reactions will a displacement reaction b occur?
copper oxide + magnesium
magnesium oxide + iron
potassium oxide + zinc
zinc oxide + lithium

Why do some of them not work?
\longrightarrow

Describe what happens during the process of electrolysis. \longrightarrow
\square

The pH of an acid or alkali is a measure of the concentration d of \qquad

A pH change from 4 to 2 increases $\mathrm{H}+$ concentration by a factor of...
a) 10

(choose the correct answer)

The pH of a strong acid is \qquad than the pH of a weaker acid if they have the same \qquad .

Acids produce \qquad in aqueous solutions.
Alkalis produce \qquad in aqueous solutions.

In copper sulfate solution what forms at the: cathode

Why?
\qquad

In sodium chloride solution what forms at the:
cathode
anode

Why?

What are the tests for:
chlorine;
hydrogen;

oxygen?

Strong acids are completely/partially ionised in an aqueous solution

A weak acid is completely/partially ionised in an aqueous solution.

The concentration of an acid is

| I understand the following topic |
| :--- | :--- |
| |
| I need to work on the following topic |

Describe how you would carry out a titration reaction between sulfuric acid and sodium hydroxide. ${ }^{\text {a }}$

Complete the risk assessment below.	b

Hazard	Risk	Emergency Procedure
	irritant	
phenolphthalein solution	toxic	

What is an oxidation reaction? (in terms of oxygen transfer) The gaining of oxygen in a reaction.

Write an equation to show an oxidation reaction.
e.g. copper + oxygen \rightarrow copper oxide

What is a reduction reaction?
The loss of oxygen in a reaction.

Write an equation to show a reduction reaction.
e.g. magnesium oxide \rightarrow magnesium + oxide

Place the following metals in order of reactivity - adding the b names to the symbols.
$\mathrm{Na}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Li}, \mathrm{K}, \mathrm{Mg}, \mathrm{Ca}$

potassium	sodium	lithium	calcium

Why are hydrogen and carbon sometimes included in the reactivity series?
They are used in the extraction of the metals.

Place arrows on the reactivity series where hydrogen and carbon could go.

Why is gold often found in its pure state?
Gold is a very unreactive metal.

Complete the word equations.
zinc carbonate + sulfuric acid \rightarrow zinc sulfate + water + carbon dioxide magnesium oxide + hydrochloric acid \rightarrow magnesium chloride + water magnesium carbonate + nitric acid \rightarrow magnesium nitrate + water + carbon dioxide
calcium carbonate + hydrochloric acid \rightarrow calcium chloride + water + carbon dioxide

Describe what a metal reacting with an acid can tell you about the reactivity of the metal.

$$
\text { acid }+ \text { metal } \rightarrow \text { salt + hydrogen }
$$

The speed of a reaction is shown by the rate that hydrogen gas is given off by the reaction.
The more reactive the metal, the faster the reaction will be.
Slow reactions: copper, zinc, iron
Quick reactions: potassium, sodium, lithium

On the pH scale, label:
strong acid; (0-3)
strong alkali; (12-14)
neutral; (7)
weak acid; (4-6)
weak alkali. (8-11)
What does the pH show?
The measure of H^{+}ions in the solution.

Some metals react with water to produce metal hydroxide and hydrogen

Some metals react with acid to produce salt and hydrogen

To measure pH you can use.
(select two)
universal indicator
pH meter

Describe how to make a soluble salt from an insoluble base.

1. Choose an acid.
2. Choose an insoluble base.
3. Warm the acid.
4. Add the insoluble base to the acid until there is no further reaction.
5. Filter the mixture.
6. Heat the solution to evaporate the water.
7. Crystals of salt will start to form.

> Complete the neutralisation reaction.
> acid + base \rightarrow salt + water
> $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

What is the pH of the products of a neutralisation reaction?
$\begin{array}{lll}\text { a) } 1 & \text { b) } 7 & \text { c) } 14\end{array}$

Complete the following:

Oxidation

Is

Loss
Reduction
Is
Gain
Oxidation is the loss of electrons and reduction is the gaining of electrons.

Describe how aluminium is extracted by electrolysis.

The positive Al^{3+} ions are attracted to the negative electrode (cathode) where they gain electrons (3) - making them neutral. The negative O^{2} - ions are attracted to the positive electrode (anode) where they lose electrons (2) - making them neutral.

Why is aluminium oxide mixed with cryolite?
To lower the melting point.
What is the overall equation for the electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to make aluminium and oxygen?
aluminium oxide \rightarrow aluminium + oxygen
$2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$

Why can aluminium not be extracted by carbon?
Aluminium is more reactive than carbon so cannot be displaced.

Write the equation for the reaction at the negative electrode $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$

Write the equation for the reaction at the positive electrode. $2 \mathrm{O}^{2}-\mathrm{O}_{2}+4 e-$

Which of the following reactions will occur? (displacement) copper oxide + magnesium
magnesium oxide + iron
potassium oxide + zinc
zinc oxide + lithium

Why do some of them not work?
The metal has to be more reactive than the metal in the compound to take its place.

Describe what happens during the process of electrolysis When electricity is passed through the solution, the positive ions in the solution go towards the negative electrode where they gain electrons. The negative ions go towards the positive electrode where they lose electrons.

The pH of an acid or alkali is a measure of the concentration of \mathbf{H}^{+}ions.

A pH change from 4 to 2 increases H^{+}concentration by a factor of...
a) 10
b) 100
c) 1000
(choose the correct answer)

The pH of a strong acid is less than the pH of a weaker acid if they have the same concentration.
Acids produce \mathbf{H}^{+}in aqueous solutions.
Alkalis produce $\mathbf{O H}^{-}$in aqueous solutions

In copper sulfate solution what forms at the:

cathode	anode
copper	oxygen and water

Why?
Copper is less reactive than hydrogen so copper is formed.

In sodium chloride solution what forms at the:
cathode
anode
hydrogen chlorine

Why?
Sodium more reactive than hydrogen so hydrogen is formed.
What are the tests for:
chlorine;
bleaches damp litmus paper
hydrogen;
squeaky pop test
oxygen?
relight a glowing splint

Strong acids are completely/partially ionised in an aqueous solution

A weak acid is completely/partially ionised in an aqueous solution.
The concentration of an acid is
a measure of the number of hydrogen ions in a solution.

I understand the following topic
I

I need to work on the following topic
\square

Describe how you would carry out a titration reaction between sulfuric acid and sodium hydroxide.

1. Using the pipette and pipette filler, measure $25 \mathrm{~cm}^{3}$ sodium hydroxide solution and pour into a conical flask.
2. Add several drops of phenolphthalein to the sodium hydroxide solution.
3. Swirl the flask and the mixture should be pink.
4. Place the conical flask on a white tile.
5. Place the burette into its stand, ensuring the tap is closed. Using the funnel, fill the burette with sulfuric acid to the $0 \mathrm{~cm}^{3}$ line. Should you go above this line, open the tap and allow the excess to run off into a beaker.
6. Once the burette is correctly filled, place over the conical flask.
7. Carefully open the tap so the acid flows slowly into the conical flask. Swirl the flask and look for the indicator changing from pink to colourless.
8. Continue adding the acid to the flask until the indicator is permanently colourless.
9. Record the total volume of acid added to the sodium hydroxide in the results table.
10. Repeat the experiment twice more.
$34.8 \mathrm{~cm}^{3}$ of sodium hydroxide (NaOH) was neutralised by $50.0 \mathrm{~cm}^{3}$ of hydrochloric acid (HCl), with a concentration of $0.150 \mathrm{~mol} / \mathrm{dm}^{3}$. Find the concentration of the sodium hydroxide.
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$
volume of acid: $50.0 \mathrm{~cm}^{3}$
concentration of acid: $0.150 \mathrm{~mol} / \mathrm{dm}^{3}$
volume of alkali: $34.8 \mathrm{~cm}^{3}$
concentration of alkali: ?
volume of acid: $50.00 \mathrm{~cm}^{3} \div 1000=0.05 \mathrm{dm}^{3}$
volume of alkali: $34.80 \mathrm{~cm}^{3} \div 1000=0.0348 \mathrm{dm}^{3}$
amount in mol $=$ volume in $\mathrm{dm}^{3} \times$ concentration in $\mathrm{mol} / \mathrm{dm}^{3}$
amount in mol (acid): $0.05 \times 0.150=0.0075 \mathrm{~mol}$
from the equation: 1 mol acid $(\mathrm{HCl}): 1 \mathrm{~mol}$ alkali (NaCl)
amount in mol (acid): 0.0075 mol
concentration in mol $/ \mathrm{dm}^{3}=$ amount in mol \div volume in dm^{3}
$0.0075 \div 0.0348=0.22 \mathrm{~mol} / \mathrm{dm}^{3}$
Complete the risk assessment below.

Hazard	Risk	Emergency Procedure
sodium hydroxide solution	irritant	Wash off skin immediately and inform the teacher.
phenolphthalein solution	toxic	Inform teacher immediately.
sulfuric acid	irritant	Wash off skin and inform teacher.

