5-7 Organic Chemistry - Trilogy

1.0 A student investigated the viscosity of liquid hydrocarbons.

The student used this method:

1. Measure $40 \mathrm{~cm}^{3}$ of the liquid hydrocarbon.
2. Pour the liquid hydrocarbon into the funnel.

Figure 1

3. Time how long it takes for all of the liquid hydrocarbon to run out of the funnel.
4. Repeat the experiment for the other liquid hydrocarbons.
1.1 Give the name of apparatus \mathbf{A} in Figure 1.
\qquad
1.2 Name the apparatus that could be used to measure $40 \mathrm{~cm}^{3}$ of liquid hydrocarbon.
[1 mark]

The student's results for six liquid hydrocarbons are shown in Table 1.
Table 1

Formula of liquid hydrocarbon	Time for liquid hydrocarbon to run out of the funnel in seconds			Mean time in seconds
	Experiment 1	Experiment 2	Experiment 3	
$\mathrm{C}_{6} \mathrm{H}_{14}$	12.2	11.8	12.0	12.0
$\mathrm{C}_{7} \mathrm{H}_{16}$	14.7	15.2	15.4	15.1
$\mathrm{C}_{8} \mathrm{H}_{18}$	18.7	19.9	18.9	
$\mathrm{C}_{10} \mathrm{H}_{22}$	27.6	26.8	28.2	27.5
$\mathrm{C}_{12} \mathrm{H}_{26}$	48.3	48.5	48.1	47.4
$\mathrm{C}_{14} \mathrm{H}_{30}$	65.9	67.1	69.0	67.3

1.3 Explain how the data show that the student's results are precise.
1.4 Describe the pattern shown on Table 1 between the number of carbon atoms in a molecule of liquid hydrocarbon and the time taken for the liquid hydrocarbon to run out of the funnel.
\qquad
\qquad
1.5 Identify the anomalous result on the table.

Suggest one error the student may have made to get this anomalous result.
[2 marks]
Anomalous result: \qquad

Error: \qquad
1.6 Use the data in Table 1 to calculate the mean time in seconds for $\mathrm{C}_{8} \mathrm{H}_{18}$. Give your answer to an appropriate number of significant figures.

[2 marks]

Mean time = \qquad S
1.7 Give one safety precaution the student should take when carrying out this experiment.
[1 mark]
2.0 This question is about organic molecules.
2.1 Large hydrocarbon molecules can be broken into smaller molecules by heating with a catalyst.
The equation shows one example of this type of reaction.

$$
\mathrm{C}_{11} \mathrm{H}_{24} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{5} \mathrm{H}_{12}
$$

Which word describes this type of reaction?

Tick one box.

Cracking \square

Polymerisation

Precipitation

Reduction

2.2 Figure 2 shows propene as a displayed structure.

Figure 2

Draw a ring around the part of the molecule which makes propene unsaturated.
2.3 Bromine water changes colour when mixed with an unsaturated compound like propene.
Complete the sentences.
Use words from the box.

Blue	Colourless	Green	Orange	Red

Before mixing with propene, bromine water is \qquad .

After mixing with propene, bromine water is \qquad .
3.1 Which one of the following is not an alkane?

Tick one box.
$\mathrm{C}_{8} \mathrm{H}_{15} \quad \square$
$\mathrm{C}_{12} \mathrm{H}_{26}$

$\mathrm{C}_{16} \mathrm{H}_{34}$

$\mathrm{C}_{24} \mathrm{H}_{50}$ \square
3.2 Which has the highest boiling point?

Draw a ring around the correct answer.
$\mathrm{C}_{3} \mathrm{H}_{6}$
$\mathrm{C}_{5} \mathrm{H}_{12}$
$\mathrm{C}_{10} \mathrm{H}_{22}$
$\mathrm{C}_{8} \mathrm{H}_{18}$
3.3 Table 2 shows some information about alkanes.

Table 2

Name	Formula	Relative formula mass	Boiling point in ${ }^{\circ} \mathbf{C}$
methane	CH_{4}	16	-160
ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	30	-90
propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44	-40
butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	58	-1
pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	72	
hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	86	68

What is the formula of heptane, the next member of the series?
3.4 Draw a graph of relative formula mass against boiling point.

On the graph:

- plot the points
- draw a line of best fit.

Boiling point in ${ }^{\circ} \mathrm{C}$

3.5 Give two conclusions you can make from your graph.
\qquad
\qquad
\qquad
4.0 Crude oil contains a mixture of hydrocarbons.

The table below shows the relative market demand and available supply of each fraction.

Fraction	Boiling point in ${ }^{\circ}$ C	Relative \% supply in crude oil	Relative \% demand
Liquid Petroleum Gas	Less than 30	2	5
Gasoline (petrol)	$30-160$	15	30
Kerosene (paraffin)	$160-250$	10	20
Diesel	$220-350$	20	25
Fuel and Heavy oils	Greater than 350	53	20

4.1 Describe how fractional distillation and cracking are used so that sufficient petrol is produced from crude oil to meet demand.
Use the information in the table, and your own knowledge.
\qquad

MARK SCHEME

Qu No.		Extra Information	Marks
1.1	(Conical) flask		1
1.2	Measuring cylinder / pipette / burette		1
1.3	(For each hydrocarbon there is) little difference from mean between the repeats / little spread about the mean		1
1.4	As the number of carbon atoms increases, the time taken for the hydrocarbon to run out of the funnel increases	C8H 18 Trial 2 Any one from: longer hydrocarbon used volume of hydrocarbon too great started timing early stopped timing too late	Allow 19.9; or this result circled on table Must indicate why the result is higher than the others. Allow the temperature was lower or the students used a thinner funnel.
1.5	$18.7+18.9$ 18	1	
1.6	18.8	1	
1.7	Wear safety glasses	An answer of 18.8 without working gains 2 marks Allow 19.2 for one mark	1

Qu No.		Extra Information	Marks
2.1	Cracking	Minimum to enclose C=C	
2.2	Ring drawn around the functional group		
Must not enclose any of the atoms of the methyl group	1		
2.3	Orange Colourless		1

Qu No.		Extra Information	Marks
3.1	$\mathrm{C}_{8} \mathrm{H}_{15}$		1
3.2	$\mathrm{C}_{10} \mathrm{H}_{22}$		1
3.3	$\mathrm{C}_{7} \mathrm{H}_{16}$	$\pm 1 / 2$ small square Allow 1 mark for $5 / 6$ plotted correctly	2
3.4	All points plotted correctly Best fit straight line	As the relative formula mass increases so does the boiling point	
3.5	non-linear/not proportional or change gets smaller as relative formula mass gets higher		1

Qu No.		Extra Information	Marks
4.1			
Level 3:	A detailed and coherent description is given for both processes, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.		5-6
Level 2:	A description is given which demonstrates a reasonable understanding of the key scientific ideas. Links are made but may not be fully articulated and / or precise.		3-4
Level 1:	Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.		1-2
	No relevant content		0
Indicative content			
Fractional distillation - Crude oil heated / evaporated - Vapours enter column - Vapours condense and are collected at different level - Each fraction has different boiling / condensing point - Each fraction has different size molecules Cracking - Large molecules heated / evaporated / vaporised - Molecules cracked / broken/ decomposed - Passed over hot catalyst at $\sim 450-550^{\circ} \mathrm{C}$ or - Heated with water/steam at $\sim 800-900^{\circ} \mathrm{C}$ - Smaller molecules are produced - Products contain alkenes and alkanes - Alkenes used for making polymers or alcohols - Alkanes used for fuels			

