

5-7 Organic Chemistry – Trilogy

1.0 A student investigated the viscosity of liquid hydrocarbons.

The student used this method:

- 1. Measure 40 cm³ of the liquid hydrocarbon.
- 2. Pour the liquid hydrocarbon into the funnel.

Figure 1

- 3. Time how long it takes for all of the liquid hydrocarbon to run out of the funnel.
- 4. Repeat the experiment for the other liquid hydrocarbons.
- **1.1** Give the name of apparatus **A** in **Figure 1**.

[1 mark]

1.2 Name the apparatus that could be used to measure 40 cm³ of liquid hydrocarbon.

[1 mark]

The student's results for six liquid hydrocarbons are shown in **Table 1**.

Formula of liquid	Time for liquid hydrocarbon to run out of the funnel in seconds			Mean time in seconds
hydrocarbon	Experiment 1	Experiment 2	Experiment 3	seconds
C_6H_{14}	12.2	11.8	12.0	12.0
C ₇ H ₁₆	14.7	15.2	15.4	15.1
C ₈ H ₁₈	18.7	19.9	18.9	
$C_{10}H_{22}$	27.6	26.8	28.2	27.5
$C_{12}H_{26}$	48.3	48.5	48.1	47.4
$C_{14}H_{30}$	65.9	67.1	69.0	67.3

Table 1

1.3 Explain how the data show that the student's results are **precise**.

[1 mark]

1.4 Describe the pattern shown on **Table 1** between the number of carbon atoms in a molecule of liquid hydrocarbon and the time taken for the liquid hydrocarbon to run out of the funnel.

[1 mark]

Identify the anomalous result on the table.
 Suggest one error the student may have made to get this anomalous result.

[2 marks]

Anomalous result:	
-------------------	--

1.6 Use the data in **Table 1** to calculate the mean time in seconds for C₈H₁₈. Give your answer to an appropriate number of significant figures.

[2 marks]

Mean time = _____s

1.7 Give **one** safety precaution the student should take when carrying out this experiment.

[1 mark]

[1 mark]

- 2.0 This question is about organic molecules.
- 2.1 Large hydrocarbon molecules can be broken into smaller molecules by heating with a catalyst. The equation shows one example of this type of reaction.

$C_{11}H_{24} \rightarrow 2C_3H_6 + C_5H_{12}$

Which word describes this type of reaction?

Tick one box. Cracking Polymerisation Precipitation Reduction

2.2 Figure 2 shows propene as a displayed structure.

Draw a ring around the part of the molecule which makes propene unsaturated.

[1 mark]

2.3 Bromine water changes colour when mixed with an unsaturated compound like propene. Complete the sentences.

Use words from the box.

[2 marks]

	Blue	Colourless	Green	Orange	Red
Be	fore mixing wi	th propene, bromine	e water is		
Aft	ter mixing with	propene, bromine v	vater is		

3.1 Which one of the following is not an alkane?

[1 mark]

Tick one bo	X.
C_8H_{15}	
$C_{12}H_{26}$	
$C_{16}H_{34}$	
$C_{24}H_{50}$	

3.2 Which has the highest boiling point? Draw a ring around the correct answer.

[1 mark]

C₃H ₆	C ₅ H ₁₂	C ₁₀ H ₂₂	C ₈ H ₁₈

3.3 Table 2 shows some information about alkanes.

Name	Formula	Relative formula mass	Boiling point in °C
methane	CH ₄	16	-160
ethane	C_2H_6	30	-90
propane	C_3H_8	44	-40
butane	C_4H_{10}	58	–1
pentane	C_5H_{12}	72	
hexane	C_6H_{14}	86	68

Table 2

What is the formula of heptane, the next member of the series?

[1 mark]

[3 marks]

3.4 Draw a graph of relative formula mass against boiling point.

On the graph:

- plot the points
- draw a line of best fit.

3.5 Give two conclusions you can make from your graph.

[2 marks]

4.0 Crude oil contains a mixture of hydrocarbons.

The table below shows the relative market demand and available supply of each fraction.

Fraction	Boiling point in °C	Relative % supply in crude oil	Relative % demand
Liquid Petroleum Gas	Less than 30	2	5
Gasoline (petrol)	30-160	15	30
Kerosene (paraffin)	160-250	10	20
Diesel	220-350	20	25
Fuel and Heavy oils	Greater than 350	53	20

4.1 Describe how **fractional distillation** and **cracking** are used so that sufficient petrol is produced from crude oil to meet demand.

Use the information in the table, and your own knowledge.

[6 marks]

MARK SCHEME

Qu No.		Extra Information	Marks
1.1	(Conical) flask		1
1.2	Measuring cylinder / pipette / burette		1
1.3	(For each hydrocarbon there is) little difference from mean between the repeats / little spread about the mean		1
1.4	As the number of carbon atoms increases, the time taken for the hydrocarbon to run out of the funnel increases		1
1.5	 C₈H₁₈ Trial 2 Any one from: longer hydrocarbon used volume of hydrocarbon too great started timing early stopped timing too late 	Allow 19.9; or this result circled on table Must indicate why the result is higher than the others. Allow the temperature was lower or the students used a thinner funnel.	1
1.6	$\frac{\frac{18.7 + 18.9}{2}}{18.8}$	An answer of 18.8 without working gains 2 marks Allow 19.2 for one mark	1
1.7	Wear safety glasses	Allow any suitable safety precaution	1

Qu No.		Extra Information	Marks
2.1	Cracking		1
2.2	Ring drawn around the functional group	Minimum to enclose C=C Must not enclose any of the atoms of the methyl group	1
2.3	Orange Colourless		1 1

Qu No.		Extra Information	Marks
3.1	C ₈ H ₁₅		1
3.2	C ₁₀ H ₂₂		1
3.3	C7H16		1
3.4	All points plotted correctly	± ½ small square Allow 1 mark for 5/6 plotted correctly	2
	Best fit straight line		1
	As the relative formula mass increases so does the boiling point		1
3.5			
	non-linear/not proportional or change gets smaller as relative formula mass gets higher		1

Qu No	о.		Extra Information	Marks
4.1				
Level	I 3:	A detailed and coherent description is given fo broad understanding of the key scientific ideas between the points raised and uses sufficient e	. The response makes logical links	5-6
Level	I 2:	A description is given which demonstrates a re scientific ideas. Links are made but may not be		3-4
Level	l 1:	Simple statements are made which demonstra relevant ideas. The response may fail to make		1-2
		No relevant content		0
Indica	ative	e content		
Fracti	iona	I distillation		
• 0	Crud	e oil heated / evaporated		
• \	Vapours enter column			
• \	/apc	apours condense and are collected at different levels		
• E	Each	fraction has different boiling / condensing poin	t	
• E	Each	fraction has different size molecules		
Crack	king			
• L	_arge	e molecules heated / evaporated / vaporised		
• N	Nole	cules cracked / broken/ decomposed		
• F	Pass	ed over hot catalyst at ~450-550°C <i>or</i>		
• +	leat	ted with water/steam at ~800-900°C		
		aller molecules are produced		
• F	Prod	ucts contain alkenes and alkanes		
• A	Alker	nes used for making polymers or alcohols		
• A	Alkar	nes used for fuels		