AQA Physics (Combined) Unit 3: Particle Model of Matter Higher

Complete the table below.

State	Can You Squash it?	Does It Flow?	Shape

Solid
Solid

Underline the physical changes and circle the chemical changes from the following
iron rusting, digesting food, dissolving sugar in water, burning wood, ice melting, breaking a bottle

Describe how you would find out the density of an b irregular object and a liquid.

\qquad
\square
\longrightarrow
\longrightarrow
$\xrightarrow{\square}$
\qquad

A regular object has a volume of $25 \mathrm{~cm}^{3}$ and a density of $7 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate its mass.

For the heating and cooling graph shown below, what are

When a substance changes state - for example, from a solid to a liquid - explain why the mass of the substance remains the same.

In terms of energy, what do the horizontal sections on the graph show?
\qquad

Define the term 'specific latent heat'.

What does the term 'specific latent heat of vaporisation' mean?
\square

the terms used to describe the changes of state between:

\square

What is the formula that links energy, mass and specific latent heat?

Calculate the amount of energy required for a saucepan of water to boil when 20 g of water changes to steam.
The specific latent heat of evaporation of water is $2.26 \times$ $10^{6} \mathrm{~J} / \mathrm{kg}$

Delete the wrong answers.

The specific heat capacity of a substance is the energy required to change the temperature of $500 \mathrm{~g} / 1 \mathrm{~kg}$ of the substance by $1^{\circ} \mathrm{C} / 10^{\circ} \mathrm{C}$.

Specific Heat Capacity

Complete the sentences below about temperature and heat.
Temperature is the measure of how
object is. It is measured in \qquad
Heat is the measure of the \qquad contained
in an object. It is measured in \qquad
When heat energy is transferred to an object, there is a temperature increase. The temperature rise is dependent on three things:
\qquad

State the equation that link

energy, mass, specific heat capacity and temperature change.

Write the units for
energy:
mass:
specific heat capacity: \qquad

Calculate the amount of energy transferred to increase a the temperature of 24 g of lead from $10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The specific heat capacity of lead is $128 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$

Underline the correct answer

The internal energy of a system is the total energy that its particles have in its:
kinetic energy stores
potential energy stores
kinetic and potential energy stores

Define the differences in density between solids and c liquids.
\square
\square
\longrightarrow

What is an internal system? d d d
\qquad

Explain, in terms of particles, why gases are easy to e compress.

A gas has a mass of 4.4 g and a volume of $2.3 \mathrm{~cm}^{3}$. Calculate the density of the gas.

A student heats a sealed cylinder containing a gas. What will happen to the pressure within the cylinder?

\qquad
\qquad

Explain the term specific latent heat of fusion.
\longrightarrow

Label the diagram, using the following keywords: melting, freezing, evaporating, condensing, sublimating, liquid, gas, solid

Draw the particle models for solids, liquids and gases.			
State	Can You Squash it?	Does It Flow?	Shape
Solid	no	no	fixed
Liquid	no	yes	Takes shape of container from bottom.
Gas	yes	yes	Takes shape of whole container.

Underline the physical changes and circle the chemical changes from the following:

ron rustins) बigesting food dissolving sugar in water,

 burning wood, ice melting, breaking a bottleDescribe how you would find out the density of an b irregular object and a liquid.

Irregular object:

Measure the mass of the object.
Place a beaker under the spout of a eureka can and fill with water until water comes out of the spout.
Once the water has stopped dripping, remove the beaker and replace it with a measuring cylinder.
Submerge the object in the eureka can and collect the displaced water. The volume of water collected equals the volume of the object.

Liquid:

Measure the mass of an empty beaker.
Using a measuring cylinder, measure $100 \mathrm{~cm}^{3}$ of liquid Pour the liquid into the beaker and record its mass.
mass of liquid $=$ mass of beaker - mass of empty
and liquid beaker

Calculate the density.
density of liquid $=$ mass of liquid \div volume of liquid
A regular object has a volume of $25 \mathrm{~cm}^{3}$ and a density of $7 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate its mass.
density $=$ mass \div volume
Rearrange the formula:
mass $=$ density \times volume

$$
=7 \times 25=175 \mathrm{~g}
$$

When a substance changes state - for example, from a solid to a liquid - explain why the mass of the substance remains the same.
The number of particles in the substance remains the same.

For the heating and cooling graph shown below, what are the terms used to describe the changes of state between:
$B \longrightarrow C$ Melting
D $\longrightarrow E$ Evaporating
$\mathrm{E} \longrightarrow \mathrm{D}$ Condensing
C \longrightarrow B Freezing

In terms of energy, what do the horizontal sections on the graph show?
Energy is transferred by heating and not used to change temperature.

Define the term 'specific latent heat'

The amount of energy required to change 1 kg of a substance from one state to another, without a change in temperature.

What does the term 'specific latent heat of vaporisation mean?
The amount of energy required to change 1 kg of a liquid into 1 kg of gas without a change in temperature.

What is the formula that links energy, mass and specific latent heat?
energy $=$ mass \times specific latent heat
Calculate the amount of energy required for a saucepan of water to boil when 20 g of water changes to steam.
The specific latent heat of evaporation of water is $2.26 \times$ $10^{6} \mathrm{~J} / \mathrm{kg}$
$0.02 \times 2.26 \times 10^{6}=4.5 \times 10^{4} \mathrm{~J}$

Delete the wrong answers.

The specific heat capacity of a substance is the energy required to change the temperature of $500 \mathrm{~g} / 1 \mathrm{~kg}$ of the substance by $1^{\circ} \mathrm{C} / 10^{\circ} \mathrm{C}$.

Specific Heat Capacity

Complete the sentences below about temperature and heat.
Temperature is the measure of how hot an
object is. It is measured in ${ }^{\circ} \mathrm{C}$.
Heat is the measure of the thermal energy contained
in an object. It is measured in joules,
When heat energy is transferred to an object, there is a temperature increase. The temperature rise is dependent on three things:

1. The mass of the object;
2. The substance the object is made from;
3. The amount of energy transferred.

State the equation that links
energy, mass, specific heat capacity and temperature change.
energy $=$ mass \times specific heat \times temperature
capacity change

Write the units for
energy: joules
mass: kg
specific heat capacity: $\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$

